984 resultados para Alluvial bar
Resumo:
Nedd4 belongs to a family of ubiquitin-protein ligases that is characterized by 2-4 WW domains, a carboxyl-terminal Hect ((h) under bar omologous to (E) under bar6-AP (C) under bar arboxyl (t) under bar erminus)-domain and in most cases an amino-terminal C2 domain. We had previously identified a series of proteins that associates with the WW domains of Nedd4. In this paper, we demonstrate that one of the Nedd4-binding proteins, N4WBP5, belongs to a small group of evolutionarily conserved proteins with three transmembrane domains. N4WBP5 binds Nedd4 WW domains via the two PPXY motifs present in the amino terminus of the protein. In addition to Nedd4, N4WBP5 can interact with the WW domains of a number of Nedd4 family members and is ubiquitinated. Endogenous N4WBP5 localizes to the Golgi complex. Ectopic expression of the protein disrupts the structure of the Golgi, suggesting that N4WBP5 forms part of a family of integral Golgi membrane proteins. Based on previous observations in yeast, we propose that N4WBP5 may act as an adaptor for Nedd4-like proteins and their putative targets to control ubiquitin-dependent protein sorting and trafficking.
Resumo:
Modeling physiological processes using tracer kinetic methods requires knowledge of the time course of the tracer concentration in blood supplying the organ. For liver studies, however, inaccessibility of the portal vein makes direct measurement of the hepatic dual-input function impossible in humans. We want to develop a method to predict the portal venous time-activity curve from measurements of an arterial time-activity curve. An impulse-response function based on a continuous distribution of washout constants is developed and validated for the gut. Experiments with simultaneous blood sampling in aorta and portal vein were made in 13 anesthetized pigs following inhalation of intravascular [O-15] CO or injections of diffusible 3-O[ C-11] methylglucose (MG). The parameters of the impulse-response function have a physiological interpretation in terms of the distribution of washout constants and are mathematically equivalent to the mean transit time ( T) and standard deviation of transit times. The results include estimates of mean transit times from the aorta to the portal vein in pigs: (T) over bar = 0.35 +/- 0.05 min for CO and 1.7 +/- 0.1 min for MG. The prediction of the portal venous time-activity curve benefits from constraining the regression fits by parameters estimated independently. This is strong evidence for the physiological relevance of the impulse-response function, which includes asymptotically, and thereby justifies kinetically, a useful and simple power law. Similarity between our parameter estimates in pigs and parameter estimates in normal humans suggests that the proposed model can be adapted for use in humans.
Resumo:
The purpose of the present study was to examine the reproducibility of laboratory-based 40-km cycle time-trial performance on a stationary wind-trainer. Each week, for three consecutive weeks, and on different days, forty-three highly trained male cyclists ((x) over bar +/- SD; age = 25 +/- 6 y; mass = 75 +/- 7 kg; peak oxygen uptake [(V) over dot O-2 peak] = 64.8 +/- 5.2 ml x kg(-1) x min(-1)) performed: 1) a (V) over dot O-2 peak test, and 2) a 40-km time-trial on their own racing bicycle mounted to a stationary wind-trainer (Cateye - Cyclosimulator). Data from all tests were compared using a one-way analysis of variance. Performance on the second and third 40-km time-trials were highly related (r = 0.96; p < 0.001), not significantly different (57:21 +/- 2:57 vs. 57:12 +/- 3:14 min:s), and displayed a low coefficient of variation (CV) = 0.9 +/- 0.7%. Although the first 40-km time-trial (58:43 +/- 3:17min:s) was not significantly different from the second and third tests (p = 0.06), inclusion of the first test in the assessment of reliability increased within-subject CV to 3.0 +/- 2.9%. 40-km time-trial speed (km x h(-1)) was significantly (p < 0.001) related to peak power output (W; r = 0.75), (V) over dot O-2 peak (1 x min(-1); r = 0.53), and the second ventilatory turnpoint (1 x min(-1); r = 0.68) measured during the progressive exercise tests. These data demonstrate that the assessment of 40-km cycle time-trial performance in well-trained endurance cyclists on a stationary wind-trainer is reproducible, provided the athletes perform a familiarization trial.
Resumo:
Low-temperature (15 K) single-crystal neutron-diffraction structures and Raman spectra of the salts (NX4)(2)[CU(OX2)(6)](SO4)(2), where X = H or D, are reported. This study is concerned with the origin of the structural phase change that is known to occur upon deuteration. Data for the deuterated salt were measured in the metastable state, achieved by application of 500 bar of hydrostatic pressure at similar to303 K followed by cooling to 281 K and the subsequent release of pressure. This allows for the direct comparison between the hydrogenous and deuterated salts, in the same modification, at ambient pressure and low temperature. The Raman spectra provide no intimation of any significant change in the intermolecular bonding. Furthermore, structural differences are few, the largest being for the long Cu-O bond, which is 2.2834(5) and 2.2802(4) Angstrom for the hydrogenous and the deuterated salts, respectively. Calorimetric data for the deuterated salt are also presented, providing an estimate of 0.17(2) kJ/mol for the enthalpy difference between the two structural forms at 295.8(5) K. The structural data suggest that substitution of hydrogen for deuterium gives rise to changes in the hydrogen-bonding interactions that result in a slightly reduced force field about the copper(II) center. The small structural differences suggest different relative stabilities for the hydrogenous and deuterated salts, which may be sufficient to stabilize the hydrogenous salt in the anomalous structural form.
Resumo:
The solubility of ethyl propionate, ethyl butyrate, and ethyl isovalerate in supercritical carbon dioxide was measured at temperature ranging from 308.15 to 333.15 K and pressure ranging from 85 to 195 bar. At the same temperature, the solubility of these compounds increases with pressure. The crossover pressure region was also observed in this study. The experimental data were correlated by the semi-empirical Chrastil equation and Peng-Robinson equation of state (EOS) using several mixing rules. The Peng-Robinson EOS gives better solubility prediction than the empirical Chrastil equation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Modelos de escoamento multifásico são amplamente usados em diversas áreas de pesquisa ambiental, como leitos fluidizados, dispersão de gás em líquidos e vários outros processos que englobam mais de uma propriedade físico-química do meio. Dessa forma, um modelo multifásico foi desenvolvido e adaptado para o estudo do transporte de sedimentos de fundo devido à ação de ondas de gravidade. Neste trabalho, foi elaborado o acoplamento multifásico de um modelo euleriano não-linear de ondas do tipo Boussinesq, baseado na formulação numérica encontrada em Wei et al. (1995), com um modelo lagrangiano de partículas, fundamentado pelo princípio Newtoniano do movimento com o esquema de colisões do tipo esferas rígidas. O modelo de ondas foi testado quanto à sua fonte geradora, representada por uma função gaussiana, pá-pistão e pá-batedor, e quanto à sua interação com a profundidade, através da não-linearidade e de propriedades dispersivas. Nos testes realizados da fonte geradora, foi observado que a fonte gaussiana, conforme Wei et al. (1999), apresentou melhor consistência e estabilidade na geração das ondas, quando comparada à teoria linear para um kh . A não-linearidade do modelo de ondas de 2ª ordem para a dispersão apresentou resultados satisfatórios quando confrontados com o experimento de ondas sobre um obstáculo trapezoidal, onde a deformação da onda sobre a estrutura submersa está em concordância com os dados experimentais encontrados na literatura. A partir daí, o modelo granular também foi testado em dois experimentos. O primeiro simula uma quebra de barragem em um tanque contendo água e o segundo, a quebra de barragem é simulada com um obstáculo rígido adicionado ao centro do tanque. Nesses experimentos, o algoritmo de colisão foi eficaz no tratamento da interação entre partícula-partícula e partícula-parede, permitindo a evidência de processos físicos que são complicados de serem simulados por modelos de malhas regulares. Para o acoplamento do modelo de ondas e de sedimentos, o algoritmo foi testado com base de dados da literatura quanto à morfologia do leito. Os resultados foram confrontados com dados analíticos e de modelos numéricos, e se mostraram satisfatórios com relação aos pontos de erosão, de sedimentação e na alteração da forma da barra arenosa
Resumo:
Pectus excavatum is the most common deformity of the thorax. A minimally invasive surgical correction is commonly carried out to remodel the anterior chest wall by using an intrathoracic convex prosthesis in the substernal position. The process of prosthesis modeling and bending still remains an area of improvement. The authors developed a new system, i3DExcavatum, which can automatically model and bend the bar preoperatively based on a thoracic CT scan. This article presents a comparison between automatic and manual bending. The i3DExcavatum was used to personalize prostheses for 41 patients who underwent pectus excavatum surgical correction between 2007 and 2012. Regarding the anatomical variations, the soft-tissue thicknesses external to the ribs show that both symmetric and asymmetric patients always have asymmetric variations, by comparing the patients’ sides. It highlighted that the prosthesis bar should be modeled according to each patient’s rib positions and dimensions. The average differences between the skin and costal line curvature lengths were 84 ± 4 mm and 96 ± 11 mm, for male and female patients, respectively. On the other hand, the i3DExcavatum ensured a smooth curvature of the surgical prosthesis and was capable of predicting and simulating a virtual shape and size of the bar for asymmetric and symmetric patients. In conclusion, the i3DExcavatum allows preoperative personalization according to the thoracic morphology of each patient. It reduces surgery time and minimizes the margin error introduced by the manually bent bar, which only uses a template that copies the chest wall curvature.
Resumo:
Program slicing is a well known family of techniques used to identify code fragments which depend on or are depended upon specific program entities. They are particularly useful in the areas of reverse engineering, program understanding, testing and software maintenance. Most slicing methods, usually oriented towards the imperative or object paradigms, are based on some sort of graph structure representing program dependencies. Slicing techniques amount, therefore, to (sophisticated) graph transversal algorithms. This paper proposes a completely different approach to the slicing problem for functional programs. Instead of extracting program information to build an underlying dependencies’ structure, we resort to standard program calculation strategies, based on the so-called Bird-Meertens formalism. The slicing criterion is specified either as a projection or a hiding function which, once composed with the original program, leads to the identification of the intended slice. Going through a number of examples, the paper suggests this approach may be an interesting, even if not completely general, alternative to slicing functional programs
Resumo:
Pectus excavatum is the most common congenital deformity of the anterior chest wall, in which an abnormal formation of the rib cage gives the chest a caved-in or sunken appearance. Today, the surgical correction of this deformity is carried out in children and adults through Nuss technic, which consists in the placement of a prosthetic bar under the sternum and over the ribs. Although this technique has been shown to be safe and reliable, not all patients have achieved adequate cosmetic outcome. This often leads to psychological problems and social stress, before and after the surgical correction. This paper targets this particular problem by presenting a method to predict the patient surgical outcome based on pre-surgical imagiologic information and chest skin dynamic modulation. The proposed approach uses the patient pre-surgical thoracic CT scan and anatomical-surgical references to perform a 3D segmentation of the left ribs, right ribs, sternum and skin. The technique encompasses three steps: a) approximation of the cartilages, between the ribs and the sternum, trough b-spline interpolation; b) a volumetric mass spring model that connects two layers - inner skin layer based on the outer pleura contour and the outer surface skin; and c) displacement of the sternum according to the prosthetic bar position. A dynamic model of the skin around the chest wall region was generated, capable of simulating the effect of the movement of the prosthetic bar along the sternum. The results were compared and validated with patient postsurgical skin surface acquired with Polhemus FastSCAN system
Resumo:
Background: Surgical repair of pectus excavatum (PE) has become more popular due to improvements in the minimally invasive Nuss procedure. The pre-surgical assessment of PE patients requires Computerized Tomography (CT), as the malformation characteristics vary from patient to patient. Objective: This work aims to characterize soft tissue thickness (STT) external to the ribs among PE patients. It also presents a comparative analysis between the anterior chest wall surface before and after surgical correction. Methods: Through surrounding tissue segmentation in CT data, STT values were calculated at different lines along the thoracic wall, with a reference point in the intersection of coronal and median planes. The comparative analysis between the two 3D anterior chest surfaces sets a surgical correction influence area (SCIA) and a volume of interest (VOI) based on image processing algorithms, 3D surface algorithms, and registration methods. Results: There are always variations between left and right side STTs (2.54±2.05 mm and 2.95±2.97 mm for female and male patients, respectively). STTs are dependent on age, sex, and body mass index of each patient. On female patients, breast tissue induces additional errors in bar manual
Resumo:
Pectus excavatum is the most common deformity of the thorax. A minimally invasive surgical correction is commonly carried out to remodel the anterior chest wall by using an intrathoracic convex prosthesis in the substernal position. The process of prosthesis modeling and bending still remains an area of improvement. The authors developed a new system, i3DExcavatum, which can automatically model and bend the bar preoperatively based on a thoracic CT scan. This article presents a comparison between automatic and manual bending. The i3DExcavatum was used to personalize prostheses for 41 patients who underwent pectus excavatum surgical correction between 2007 and 2012. Regarding the anatomical variations, the soft-tissue thicknesses external to the ribs show that both symmetric and asymmetric patients always have asymmetric variations, by comparing the patients’ sides. It highlighted that the prosthesis bar should be modeled according to each patient’s rib positions and dimensions. The average differences between the skin and costal line curvature lengths were 84 ± 4 mm and 96 ± 11 mm, for male and female patients, respectively. On the other hand, the i3DExcavatum ensured a smooth curvature of the surgical prosthesis and was capable of predicting and simulating a virtual shape and size of the bar for asymmetric and symmetric patients. In conclusion, the i3DExcavatum allows preoperative personalization according to the thoracic morphology of each patient. It reduces surgery time and minimizes the margin error introduced by the manually bent bar, which only uses a template that copies the chest wall curvature.
Resumo:
Pectus carinatum (PC) is a chest deformity caused by a disproportionate growth of the costal cartilages compared to the bony thoracic skeleton, pulling the sternum towards, which leads to its protrusion. There has been a growing interest on using the ‘reversed Nuss’ technique as minimally invasive procedure for PC surgical correction. A corrective bar is introduced between the skin and the thoracic cage and positioned on top of the sternum highest protrusion area for continuous pressure. Then, it is fixed to the ribs and kept implanted for about 2–3 years. The purpose of this work was to (a) assess the stresses distribution on the thoracic cage that arise from the procedure, and (b) investigate the impact of different positioning of the corrective bar along the sternum. The higher stresses were generated on the 4th, 5th and 6th ribs backend, supporting the hypothesis of pectus deformities correction-induced scoliosis. The different bar positioning originated different stresses on the ribs’ backend. The bar position that led to lower stresses generated on the ribs backend was the one that also led to the smallest sternum displacement. However, this may be preferred, as the risk of induced scoliosis is lowered.
Resumo:
Background: Surgical repair of pectus excavatum (PE) has become more popular due to improvements in the minimally invasive Nuss procedure. The pre-surgical assessment of PE patients requires Computerized Tomography (CT), as the malformation characteristics vary from patient to patient. Objective: This work aims to characterize soft tissue thickness (STT) external to the ribs among PE patients. It also presents a comparative analysis between the anterior chest wall surface before and after surgical correction. Methods: Through surrounding tissue segmentation in CT data, STT values were calculated at different lines along the thoracic wall, with a reference point in the intersection of coronal and median planes. The comparative analysis between the two 3D anterior chest surfaces sets a surgical correction influence area (SCIA) and a volume of interest (VOI) based on image processing algorithms, 3D surface algorithms, and registration methods. Results: There are always variations between left and right side STTs (2.54±2.05 mm and 2.95±2.97 mm for female and male patients, respectively). STTs are dependent on age, sex, and body mass index of each patient. On female patients, breast tissue induces additional errors in bar manual
Resumo:
Pectus excavatum is the most common deformity of the thorax. A minimally invasive surgical correction is commonly carried out to remodel the anterior chest wall by using an intrathoracic convex prosthesis in the substernal position. The process of prosthesis modeling and bending still remains an area of improvement. The authors developed a new system, i3DExcavatum, which can automatically model and bend the bar preoperatively based on a thoracic CT scan. This article presents a comparison between automatic and manual bending. The i3DExcavatum was used to personalize prostheses for 41 patients who underwent pectus excavatum surgical correction between 2007 and 2012. Regarding the anatomical variations, the soft-tissue thicknesses external to the ribs show that both symmetric and asymmetric patients always have asymmetric variations, by comparing the patients’ sides. It highlighted that the prosthesis bar should be modeled according to each patient’s rib positions and dimensions. The average differences between the skin and costal line curvature lengths were 84 ± 4 mm and 96 ± 11 mm, for male and female patients, respectively. On the other hand, the i3DExcavatum ensured a smooth curvature of the surgical prosthesis and was capable of predicting and simulating a virtual shape and size of the bar for asymmetric and symmetric patients. In conclusion, the i3DExcavatum allows preoperative personalization according to the thoracic morphology of each patient. It reduces surgery time and minimizes the margin error introduced by the manually bent bar, which only uses a template that copies the chest wall curvature.
Resumo:
O estudo analisa a produção científica brasileira em anais de congressos. Comportamento do Consumidor Marketing entre 2000 e 2009 publicada nos periódicos continua a ser o tema que mais atrai artigos (29%). O BAR, RAC, RAE, RAM, RAUSP e REAd e nos anais dos número médio de autores por artigo aumentou de 1,7 EnANPADs e EMAs. Em relação aos resultados da dé-para 2,3, e a concentração de artigos produzidos pelas cada passada (VIEIRA, 2003), verificou-se um aumento cinco instituições mais produtivas diminuiu de 62,5% para expressivo, de 368%, no número de artigos publicados. 49,6%. O número médio de citações por artigo aumen-A participação de artigos publicados em anais de con-tou de 21,6 para 37,4, mas o número médio de citações gressos (81,1%) continua muito superior à participação de periódicos nacionais aumentou apenas de 2,0 para de artigos publicados em periódicos (18,9%). Cerca de 2,5. O artigo conclui apontando alguns caminhos para a 65% dos autores publicaram apenas um único artigo em evolução da produção científica na área de Marketing.