909 resultados para Algebraic Geometric Codes
Resumo:
In many cases, it is not possible to call the motorists to account for their considerable excess in speeding, because they deny being the driver on the speed-check photograph. An anthropological comparison of facial features using a photo-to-photo comparison can be very difficult depending on the quality of the photographs. One difficulty of that analysis method is that the comparison photographs of the presumed driver are taken with a different camera or camera lens and from a different angle than for the speed-check photo. To take a comparison photograph with exactly the same camera setup is almost impossible. Therefore, only an imprecise comparison of the individual facial features is possible. The geometry and position of each facial feature, for example the distances between the eyes or the positions of the ears, etc., cannot be taken into consideration. We applied a new method using 3D laser scanning, optical surface digitalization, and photogrammetric calculation of the speed-check photo, which enables a geometric comparison. Thus, the influence of the focal length and the distortion of the objective lens are eliminated and the precise position and the viewing direction of the speed-check camera are calculated. Even in cases of low-quality images or when the face of the driver is partly hidden, good results are delivered using this method. This new method, Geometric Comparison, is evaluated and validated in a prepared study which is described in this article.
Resumo:
The aim of this study was to compare the angiographic changes in coronary geometry of the bioresorbable vascular scaffolds (BVS) and metallic platform stent (MPS) between baseline and follow-up.
Resumo:
The examination of traffic accidents is daily routine in forensic medicine. An important question in the analysis of the victims of traffic accidents, for example in collisions between motor vehicles and pedestrians or cyclists, is the situation of the impact. Apart from forensic medical examinations (external examination and autopsy), three-dimensional technologies and methods are gaining importance in forensic investigations. Besides the post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) for the documentation and analysis of internal findings, highly precise 3D surface scanning is employed for the documentation of the external body findings and of injury-inflicting instruments. The correlation of injuries of the body to the injury-inflicting object and the accident mechanism are of great importance. The applied methods include documentation of the external and internal body and the involved vehicles and inflicting tools as well as the analysis of the acquired data. The body surface and the accident vehicles with their damages were digitized by 3D surface scanning. For the internal findings of the body, post-mortem MSCT and MRI were used. The analysis included the processing of the obtained data to 3D models, determination of the driving direction of the vehicle, correlation of injuries to the vehicle damages, geometric determination of the impact situation and evaluation of further findings of the accident. In the following article, the benefits of the 3D documentation and computer-assisted, drawn-to-scale 3D comparisons of the relevant injuries with the damages to the vehicle in the analysis of the course of accidents, especially with regard to the impact situation, are shown on two examined cases.
Resumo:
Currently photon Monte Carlo treatment planning (MCTP) for a patient stored in the patient database of a treatment planning system (TPS) can usually only be performed using a cumbersome multi-step procedure where many user interactions are needed. This means automation is needed for usage in clinical routine. In addition, because of the long computing time in MCTP, optimization of the MC calculations is essential. For these purposes a new graphical user interface (GUI)-based photon MC environment has been developed resulting in a very flexible framework. By this means appropriate MC transport methods are assigned to different geometric regions by still benefiting from the features included in the TPS. In order to provide a flexible MC environment, the MC particle transport has been divided into different parts: the source, beam modifiers and the patient. The source part includes the phase-space source, source models and full MC transport through the treatment head. The beam modifier part consists of one module for each beam modifier. To simulate the radiation transport through each individual beam modifier, one out of three full MC transport codes can be selected independently. Additionally, for each beam modifier a simple or an exact geometry can be chosen. Thereby, different complexity levels of radiation transport are applied during the simulation. For the patient dose calculation, two different MC codes are available. A special plug-in in Eclipse providing all necessary information by means of Dicom streams was used to start the developed MC GUI. The implementation of this framework separates the MC transport from the geometry and the modules pass the particles in memory; hence, no files are used as the interface. The implementation is realized for 6 and 15 MV beams of a Varian Clinac 2300 C/D. Several applications demonstrate the usefulness of the framework. Apart from applications dealing with the beam modifiers, two patient cases are shown. Thereby, comparisons are performed between MC calculated dose distributions and those calculated by a pencil beam or the AAA algorithm. Interfacing this flexible and efficient MC environment with Eclipse allows a widespread use for all kinds of investigations from timing and benchmarking studies to clinical patient studies. Additionally, it is possible to add modules keeping the system highly flexible and efficient.