899 resultados para Alcohol Drug Interaction.
Resumo:
Purpose: To construct a cluster model or a gene signature for Stevens-Johnson syndrome (SJS) using pathways analysis in order to identify some potential biomarkers that may be used for early detection of SJS and epidermal necrolysis (TEN) manifestations. Methods: Gene expression profiles of GSE12829 were downloaded from Gene Expression Omnibus database. A total of 193 differentially expressed genes (DEGs) were obtained. We applied these genes to geneMANIA database, to remove ambiguous and duplicated genes, and after that, characterized the gene expression profiles using geneMANIA, DAVID, REACTOME, STRING and GENECODIS which are online software and databases. Results: Out of 193 genes, only 91 were used (after removing the ambiguous and duplicated genes) for topological analysis. It was found by geneMANIA database search that majority of these genes were coexpressed yielding 84.63 % co-expression. It was found that ten genes were in Physical interactions comprising almost 14.33 %. There were < 1 % pathway and genetic interactions with values of 0.97 and 0.06 %, respectively. Final analyses revealed that there are two clusters of gene interactions and 13 genes were shown to be in evident relationship of interaction with regards to hypersensitivity. Conclusion: Analysis of differential gene expressions by topological and database approaches in the current study reveals 2 gene network clusters. These genes are CD3G, CD3E, CD3D, TK1, TOP2A, CDK1, CDKN3, CCNB1, and CCNF. There are 9 key protein interactions in hypersensitivity reactions and may serve as biomarkers for SJS and TEN. Pathways related gene clusters has been identified and a genetic model to predict SJS and TEN early incidence using these biomarker genes has been developed.
Resumo:
There is a growing societal need to address the increasing prevalence of behavioral health issues, such as obesity, alcohol or drug use, and general lack of treatment adherence for a variety of health problems. The statistics, worldwide and in the USA, are daunting. Excessive alcohol use is the third leading preventable cause of death in the United States (with 79,000 deaths annually), and is responsible for a wide range of health and social problems. On the positive side though, these behavioral health issues (and associated possible diseases) can often be prevented with relatively simple lifestyle changes, such as losing weight with a diet and/or physical exercise, or learning how to reduce alcohol consumption. Medicine has therefore started to move toward finding ways of preventively promoting wellness, rather than solely treating already established illness.^ Evidence-based patient-centered Brief Motivational Interviewing (BMI) interventions have been found particularly effective in helping people find intrinsic motivation to change problem behaviors after short counseling sessions, and to maintain healthy lifestyles over the long-term. Lack of locally available personnel well-trained in BMI, however, often limits access to successful interventions for people in need. To fill this accessibility gap, Computer-Based Interventions (CBIs) have started to emerge. Success of the CBIs, however, critically relies on insuring engagement and retention of CBI users so that they remain motivated to use these systems and come back to use them over the long term as necessary.^ Because of their text-only interfaces, current CBIs can therefore only express limited empathy and rapport, which are the most important factors of health interventions. Fortunately, in the last decade, computer science research has progressed in the design of simulated human characters with anthropomorphic communicative abilities. Virtual characters interact using humans’ innate communication modalities, such as facial expressions, body language, speech, and natural language understanding. By advancing research in Artificial Intelligence (AI), we can improve the ability of artificial agents to help us solve CBI problems.^ To facilitate successful communication and social interaction between artificial agents and human partners, it is essential that aspects of human social behavior, especially empathy and rapport, be considered when designing human-computer interfaces. Hence, the goal of the present dissertation is to provide a computational model of rapport to enhance an artificial agent’s social behavior, and to provide an experimental tool for the psychological theories shaping the model. Parts of this thesis were already published in [LYL+12, AYL12, AL13, ALYR13, LAYR13, YALR13, ALY14].^
Resumo:
Brain is one of the safe sanctuaries for HIV and, in turn, continuously supplies active viruses to the periphery. Additionally, HIV infection in brain results in several mild-to-severe neuro-immunological complications termed neuroAIDS. One-tenth of HIV-infected population is addicted to recreational drugs such as opiates, alcohol, nicotine, marijuana, etc. which share common target-areas in the brain with HIV. Interestingly, intensity of neuropathogenesis is remarkably enhanced due to exposure of recreational drugs during HIV infection. Current treatments to alleviate either the individual or synergistic effects of abusive drugs and HIV on neuronal modulations are less effective at CNS level, basically due to impermeability of therapeutic molecules across blood-brain barrier (BBB). Despite exciting advancement of nanotechnology in drug delivery, existing nanovehicles such as dendrimers, polymers, micelles, etc. suffer from the lack of adequate BBB penetrability before the drugs are engulfed by the reticuloendothelial system cells as well as the uncertainty that if and when the nanocarrier reaches the brain. Therefore, in order to develop a fast, target-specific, safe, and effective approach for brain delivery of anti-addiction, anti-viral and neuroprotective drugs, we exploited the potential of magnetic nanoparticles (MNPs) which, in recent years, has attracted significant importance in biomedical applications. We hypothesize that under the influence of external (non-invasive) magnetic force, MNPs can deliver these drugs across BBB in most effective manner. Accordingly, in this dissertation, I delineated the pharmacokinetics and dynamics of MNPs bound anti-opioid, anti-HIV and neuroprotective drugs for delivery in brain. I have developed a liposome-based novel magnetized nanovehicle which, under the influence of external magnetic forces, can transmigrate and effectively deliver drugs across BBB without compromising its integrity. It is expected that the developed nanoformulations may be of high therapeutic significance for neuroAIDS and for drug addiction as well.
Resumo:
Nanoparticles are often considered as efficient drug delivery vehicles for precisely dispensing the therapeutic payloads specifically to the diseased sites in the patient’s body, thereby minimizing the toxic side effects of the payloads on the healthy tissue. However, the fundamental physics that underlies the nanoparticles’ intrinsic interaction with the surrounding cells is inadequately elucidated. The ability of the nanoparticles to precisely control the release of its payloads externally (on-demand) without depending on the physiological conditions of the target sites has the potential to enable patient- and disease-specific nanomedicine, also known as Personalized NanoMedicine (PNM). In this dissertation, magneto-electric nanoparticles (MENs) were utilized for the first time to enable important functions, such as (i) field-controlled high-efficacy dissipation-free targeted drug delivery system and on-demand release at the sub-cellular level, (ii) non-invasive energy-efficient stimulation of deep brain tissue at body temperature, and (iii) a high-sensitivity contrasting agent to map the neuronal activity in the brain non-invasively. First, this dissertation specifically focuses on using MENs as energy-efficient and dissipation-free field-controlled nano-vehicle for targeted delivery and on-demand release of a anti-cancer Paclitaxel (Taxol) drug and a anti-HIV AZT 5’-triphosphate (AZTTP) drug from 30-nm MENs (CoFe2O4-BaTiO3) by applying low-energy DC and low-frequency (below 1000 Hz) AC fields to separate the functions of delivery and release, respectively. Second, this dissertation focuses on the use of MENs to non-invasively stimulate the deep brain neuronal activity via application of a low energy and low frequency external magnetic field to activate intrinsic electric dipoles at the cellular level through numerical simulations. Third, this dissertation describes the use of MENs to track the neuronal activities in the brain (non-invasively) using a magnetic resonance and a magnetic nanoparticle imaging by monitoring the changes in the magnetization of the MENs surrounding the neuronal tissue under different states. The potential therapeutic and diagnostic impact of this innovative and novel study is highly significant not only in HIV-AIDS, Cancer, Parkinson’s and Alzheimer’s disease but also in many CNS and other diseases, where the ability to remotely control targeted drug delivery/release, and diagnostics is the key.
Resumo:
Objective: There is considerable evidence of a cultural shift towards heavier alcohol consumption among university students, especially women. The aim of this study is to investigate the prevalence and correlates of hazardous alcohol consumption (HAC) among university students with particular reference to gender and to compare different modes of data collection in this population. Setting: A large Irish university. Design: A cross-sectional study using a classroom distributed paper questionnaire. Participants: A total of 2275 undergraduates completed the classroom survey, 84% of those in class and 51% of those registered for the relevant module. Main outcome measures: Prevalence of HAC measured using the Alcohol Use Disorders Identification Test for Consumption (AUDIT-C) and the proportion of university students reporting 1 or more of 13 adverse consequences linked to HAC. HAC was defined as an AUDIT-C score of 6 or more among males and 5 or more among females. Results: In the classroom sample, 66.4% (95% CI 64.4 to 68.3) reported HAC (65.2% men and 67.3% women). In women, 57.4% met HAC thresholds for men. Similar patterns of adverse consequences were observed among men and women. Students with a hazardous consumption pattern were more likely to report smoking, illicit drug use and being sexually active. Conclusions: The findings highlight the high prevalence of HAC among university students relative to the general population. Public policy measures require review to tackle the short-term and long-term risks to physical, mental and social health and well-being.
Resumo:
Objetivo: El propósito del estudio fue describir estadísticamente las etapas de cambio comportamental frente al consumo de sustancias psicoactivas –SPA– (alcohol, tabaco y drogas ilegales) en escolares entre 9 y 17 años de Bogotá- Colombia, pertenecientes al estudio FUPRECOL. Método: Se trata de un estudio descriptivo y transversal en 6.965 niños y adolescentes entre 9 y 17 años, pertenecientes a 24 instituciones educativas oficiales de Bogotá - Colombia. La medición de los procesos de cambio propuestos por el Modelo Transteórico (MTT), aplicados al consumo de drogas, tabaco y alcohol se aplicaron de manera auto-diligenciada mediante un cuestionario estructurado. Resultados: De la muestra evaluada, el 58,4% fueron mujeres con un promedio de edad 12,74 ± 2.38 años. En la población en general, frente al consumo de drogas, el 6% de los escolares se encontraban en etapa de pre-contemplación, 44 % en contemplación; 30% en preparación/acción, 20% en mantenimiento. Con relación al consumo de alcohol, el 5% de los niños y adolescentes se encontraban en etapa de pre-contemplación, 36 % en contemplación; 12% en preparación/acción, 46% en mantenimiento. Frente al tabaco, el 4% de los niños y adolescentes se encontraban en etapa de pre-contemplación, 33 % en contemplación; 12% en preparación/acción, 51% en mantenimiento. Conclusiones: En los escolares evaluados, un importante porcentaje se ubica en la etapa de mantenimiento frente a la intención de consumo de tabaco y alcohol. Frente al consumo de drogas ilegales los niños y adolescentes están en la etapa de contemplación. Se requieren esfuerzos mayores para fomentar programas preventivos que enseñen sobre el riesgo del abuso/dependencia de este tipo de sustancias psicoactiva sobre la salud; dándole prioridad en las agendas y políticas públicas dentro del ámbito escolar.
Resumo:
Despite extensive research and introduction of innovative therapy, lung cancer prognosis remains poor, with a five years survival of only 17%. The success of pharmacological treatment is often impaired by drug resistance. Thus, the characterization of response mechanisms to anti-cancer compounds and of the molecular mechanisms supporting lung cancer aggressiveness are crucial for patient’s management. In the first part of this thesis, we characterized the molecular mechanism behind resistance of lung cancer cells to the Inhibitors of the Bromodomain and Extraterminal domain containing Proteins (BETi). Through a CRISPR/Cas9 screening we identified three Hippo Pathway members, LATS2, TAOK1 and NF2 as genes implicated in susceptibility to BETi. These genes confer sensitivity to BETi inhibiting TAZ activity. Conversely, TAZ overexpression increases resistance to BETi. We also displayed that BETi downregulate both YAP, TAZ and TEADs expression in several cancer cell lines, implying a novel BETi-dependent cytotoxic mechanism. In the second part of this work, we attempted to characterize the crosstalk between the TAZ gene and its cognate antisense long-non coding RNA (lncRNA) TAZ-AS202 in lung tumorigenesis. As for TAZ downregulation, TAZ-AS202 silencing impairs NSCLC cells proliferation, migration and invasion, suggesting a pro-tumorigenic function for this lncRNA during lung tumorigenesis. TAZ-AS202 regulates TAZ target genes without altering TAZ expression or localization. This finding implies an uncovered functional cooperation between TAZ and TAZ-AS202. Moreover, we found that the EPH-ephrin signaling receptor EPHB2 is a downstream effector affected by both TAZ and TAZ-AS202 silencing. EPHB2 downregulation significantly attenuates cells proliferation, migration and invasion, suggesting that, at least in part, TAZ-AS202 and TAZ pro-oncogenic activity depends on EPH-ephrin signaling final deregulation. Finally, we started to dissect the mechanism underlying the TAZ-AS202 regulatory activity on EPHB2 in lung cancer, which may involve the existence of an intermediate transcription factor and is the object of our ongoing research.
Resumo:
Advanced analytical methodologies were developed to characterize new potential active MTDLs on isolated targets involved in the first stages of Alzheimer’s disease (AD). In addition, the methods investigated drug-protein bindings and evaluated protein-protein interactions involved in the neurodegeneration. A high-throughput luminescent assay allowed the study of the first in class GSK-3β/ HDAC dual inhibitors towards the enzyme GSK-3β. The method was able to identify an innovative disease-modifying agent with an activity in the micromolar range both on GSK-3β, HDAC1 and HDAC6. Then, the same assay reliably and quickly selected true positive hit compounds among natural Amaryllidaceae alkaloids tested against GSK-3β. Hence, given the central role of the amyloid pathway in the multifactorial nature of AD, a multi-methodological approach based on mass spectrometry (MS), circular dichroism spectroscopy (CD) and ThT assay was applied to characterize the potential interaction of CO releasing molecules (CORMs) with Aβ1-42 peptide. The comprehensive method provided reliable information on the different steps of the fibrillation process and regarding CORMs mechanism of action. Therefore, the optimal CORM-3/Aβ1−42 ratio in terms of inhibitory effect was identified by mass spectrometry. CD analysis confirmed the stabilizing effect of CORM-3 on the Aβ1−42 peptide soluble form and the ThT Fluorescent Analysis ensured that the entire fibrillation process was delayed. Then the amyloid aggregation process was studied in view of a possible correlation with AD lipid brain alterations. Therefore, SH-SY5Y cells were treated with increasing concentration of Aß1-42 at different times and the samples were analysed by a RP-UHPLC system coupled with a high-resolution quadrupole TOF mass spectrometer in comprehensive data-independent SWATH acquisition mode. Each lipid class profiling in SH-SY5Y cells treated with Aß1-42 was compared to the one obtained from the untreated. The approach underlined some peculiar lipid alterations, suitable as biomarkers, that might be correlated to Aß1-42 different aggregation species.
Resumo:
The micellization of a homologous series of zwitterionic surfactants, a group of sulfobetaines, was studied using isothermal titration calorimetry (ITC) in the temperature range from 15 to 65 °C. The increase in both temperature and the alkyl chain length leads to more negative values of ΔGmic(0) , favoring the micellization. The entropic term (ΔSmic(0)) is predominant at lower temperatures, and above ca. 55-65 °C, the enthalpic term (ΔHmic(0)) becomes prevalent, figuring a jointly driven process as the temperature increases. The interaction of these sulfobetaines with different polymers was also studied by ITC. Among the polymers studied, only two induced the formation of micellar aggregates at lower surfactant concentration: poly(acrylic acid), PAA, probably due to the formation of hydrogen bonds between the carboxylic group of the polymer and the sulfonate group of the surfactant, and poly(sodium 4-styrenesulfonate), PSS, probably due to the incorporation of the hydrophobic styrene group into the micelles. The prevalence of the hydrophobic and not the electrostatic contributions to the interaction between sulfobetaine and PSS was confirmed by an increased interaction enthalpy in the presence of electrolytes (NaCl) and by the observation of a significant temperature dependence, the latter consistent with the proposed removal of hydrophobic groups from water.
Resumo:
To evaluate associations between polymorphisms of the N-acetyltransferase 2 (NAT2), human 8-oxoguanine glycosylase 1 (hOGG1) and X-ray repair cross-complementing protein 1 (XRCC1) genes and risk of upper aerodigestive tract (UADT) cancer. A case-control study involving 117 cases and 224 controls was undertaken. The NAT2 gene polymorphisms were genotyped by automated sequencing and XRCC1 Arg399Gln and hOGG1 Ser326Cys polymorphisms were determined by Polymerase Chain Reaction followed by Restriction Fragment Length Polymorphism (PCR-RFLP) methods. Slow metabolization phenotype was significantly associated as a risk factor for the development of UADT cancer (p=0.038). Furthermore, haplotype of slow metabolization was also associated with UADT cancer (p=0.014). The hOGG1 Ser326Cys polymorphism (CG or GG vs. CC genotypes) was shown as a protective factor against UADT cancer in moderate smokers (p=0.031). The XRCC1 Arg399Gln polymorphism (GA or AA vs. GG genotypes), in turn, was a protective factor against UADT cancer only among never-drinkers (p=0.048). Interactions involving NAT2, XRCC1 Arg399Gln and hOGG1 Ser326Cys polymorphisms may modulate the risk of UADT cancer in this population.
Resumo:
Split-plot design (SPD) and near-infrared chemical imaging were used to study the homogeneity of the drug paracetamol loaded in films and prepared from mixtures of the biocompatible polymers hydroxypropyl methylcellulose, polyvinylpyrrolidone, and polyethyleneglycol. The study was split into two parts: a partial least-squares (PLS) model was developed for a pixel-to-pixel quantification of the drug loaded into films. Afterwards, a SPD was developed to study the influence of the polymeric composition of films and the two process conditions related to their preparation (percentage of the drug in the formulations and curing temperature) on the homogeneity of the drug dispersed in the polymeric matrix. Chemical images of each formulation of the SPD were obtained by pixel-to-pixel predictions of the drug using the PLS model of the first part, and macropixel analyses were performed for each image to obtain the y-responses (homogeneity parameter). The design was modeled using PLS regression, allowing only the most relevant factors to remain in the final model. The interpretation of the SPD was enhanced by utilizing the orthogonal PLS algorithm, where the y-orthogonal variations in the design were separated from the y-correlated variation.
Resumo:
Substantial complexity has been introduced into treatment regimens for patients with human immunodeficiency virus (HIV) infection. Many drug-related problems (DRPs) are detected in these patients, such as low adherence, therapeutic inefficacy, and safety issues. We evaluated the impact of pharmacist interventions on CD4+ T-lymphocyte count, HIV viral load, and DRPs in patients with HIV infection. In this 18-month prospective controlled study, 90 outpatients were selected by convenience sampling from the Hospital Dia-University of Campinas Teaching Hospital (Brazil). Forty-five patients comprised the pharmacist intervention group and 45 the control group; all patients had HIV infection with or without acquired immunodeficiency syndrome. Pharmaceutical appointments were conducted based on the Pharmacotherapy Workup method, although DRPs and pharmacist intervention classifications were modified for applicability to institutional service limitations and research requirements. Pharmacist interventions were performed immediately after detection of DRPs. The main outcome measures were DRPs, CD4+ T-lymphocyte count, and HIV viral load. After pharmacist intervention, DRPs decreased from 5.2 (95% confidence interval [CI] =4.1-6.2) to 4.2 (95% CI =3.3-5.1) per patient (P=0.043). A total of 122 pharmacist interventions were proposed, with an average of 2.7 interventions per patient. All the pharmacist interventions were accepted by physicians, and among patients, the interventions were well accepted during the appointments, but compliance with the interventions was not measured. A statistically significant increase in CD4+ T-lymphocyte count in the intervention group was found (260.7 cells/mm(3) [95% CI =175.8-345.6] to 312.0 cells/mm(3) [95% CI =23.5-40.6], P=0.015), which was not observed in the control group. There was no statistical difference between the groups regarding HIV viral load. This study suggests that pharmacist interventions in patients with HIV infection can cause an increase in CD4+ T-lymphocyte counts and a decrease in DRPs, demonstrating the importance of an optimal pharmaceutical care plan.
Resumo:
Severe accidents caused by the armed spider Phoneutria nigriventer cause neurotoxic manifestations in victims. In experiments with rats, P. nigriventer venom (PNV) temporarily disrupts the properties of the BBB by affecting both the transcellular and the paracellular route. However, it is unclear how cells and/or proteins participate in the transient opening of the BBB. The present study demonstrates that PNV is a substrate for the multidrug resistance protein-1 (MRP1) in cultured astrocyte and endothelial cells (HUVEC) and increases mrp1 and cx43 and down-regulates glut1 mRNA transcripts in cultured astrocytes. The inhibition of nNOS by 7-nitroindazole suggests that NO derived from nNOS mediates some of these effects by either accentuating or opposing the effects of PNV. In vivo, MRP1, GLUT1 and Cx43 protein expression is increased differentially in the hippocampus and cerebellum, indicating region-related modulation of effects. PNV contains a plethora of Ca(2+), K(+) and Na(+) channel-acting neurotoxins that interfere with glutamate handling. It is suggested that the findings of the present study are the result of a complex interaction of signaling pathways, one of which is the NO, which regulates BBB-associated proteins in response to PNV interference on ions physiology. The present study provides additional insight into PNV-induced BBB dysfunction and shows that a protective mechanism is activated against the venom. The data shows that PNV has qualities for potential use in drug permeability studies across the BBB.
Resumo:
Witches' broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen's transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions.