971 resultados para Airflow resistivity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little attention has been paid to the possibility of transmission of Salmonella in intensive pig production systems through alternate methods, such as airborne or direct nose-to-nose contact. This experimental study tested the hypothesis of nose-to-nose transmission of Salmonella enterica serovars Typhimurium (Trial I) and Agona (Trial II) in weaned pigs using stainless steel/ glass isolation cabinets. In each trial, cabinet 1 (control pigs) and cabinet 2 (sentinel pigs) were connected directly to the fan unit. Cabinet 3 (seeded pigs) was not directly linked to the fan, but was arranged to receive a constant unidirectional airflow from cabinet 2 (sentinel pigs) through a 10 cm diameter hole, which also allowed nose-to-nose contact between pigs housed in these two cabinets. Air was taken out of the system through ducts connecting cabinets 1 and 3 to the exhauster. Therefore, direct contact among seeded and sentinel pigs was allowed but possible aerial transference of contaminated particles between those cabinets was prevented. The system was opened 21 days post-inoculation and tissue samples were collected for bacteriological analysis. The recovery of nalidixic acid-resistant Salmonella Typhimurium from sentinel pigs corroborates the hypothesis of nose-to-nose transmission of that pathogen in pigs. However, serovar-related differences might exist regarding the nose-to-nose transmissibility of Salmonella in pigs, since Salmonella Agona was not detected in sentinel pigs (Trial II). Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study tested the hypothesis of airborne transmission of Salmonella Agona (Trial I) and Salmonella Typhimurium (Trial II) in weaned pigs. The trials were performed using stainless-steel/glass isolation cabinets connected by air ducts to permit an unidirectional airflow from cabinet 1 (two control pigs) to cabinet 3 (two sentinel pigs), passing through cabinet 2 (two inoculated pigs). Air samples, pooled faecal samples from the floor and rectal swabs were collected daily and assessed by culture and PCR. A fumigation chamber and rubber gloves coupled to the cabinets allowed sampling without opening the system. Trials I and II lasted 15 and 19 days respectively. The recovery of S. Agona and S. Typhimurium and detection of scroconversion in sentinel pigs indicate that airborne Salmonella transmission in weaned pigs over short distances is possible. Further studies on the role of aerosols in the epidemiology of Salmonella in intensive pig production should be performed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As unidades de beneficiamento de macadâmia adotam silos secadores distintos, para cada etapa de secagem, a fim de garantir a manutenção da qualidade do produto pela redução da umidade a níveis desejáveis. Diante da necessidade de quantificar a resistência apresentada pelas nozes, submetidas a diferentes fluxos de ar durante a secagem, bem como avaliar a possibilidade de utilização de modelos empíricos, que estimem o gradiente de pressão a partir da vazão de ar, conduziram-se vários testes em laboratório para obtenção de dados experimentais e ajuste de modelos. Frutos de macadâmia (M. integrifolia), com umidade de 0,11 b.s., após limpeza e classificação, foram colocados no interior de um protótipo constituído por uma coluna de chapa galvanizada (com tomadas para medição da pressão estática), plenum e ventilador, sendo submetidos a diferentes fluxos de ar. Os testes consistiram de três medidas por profundidade, para cada um dos três lotes de nozes, perfazendo um total de nove medidas de pressão estática por profundidade na coluna. Os resultados obtidos permitiram concluir que os fluxos de ar testados apresentaram efeito significativo sobre a queda de pressão estática na coluna de macadâmia, a qual aumentou linearmente com a profundidade. Os dados experimentais ajustaram-se muito bem aos modelos de Shedd e Hunter, sugerindo sua boa aplicabilidade para a macadâmia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente trabalho foi realizado na Fazenda Experimental Lageado, da Universidade Estadual Paulista em Botucatu, SP, e objetivou-se analisar o desempenho de um silo secador alambrado com ar à temperatura ambiente, de projeto simples, com possibilidades de atender às necessidades de pequenos cafeicultores. Para a avaliação do desempenho da secagem, foram realizadas medições do teor de água do café, temperaturas da massa de grãos, do ar de exaustão, do ar de secagem e do ar ambiente, umidade relativa ambiente, velocidade do ar de secagem e o tempo total de secagem. Para avaliar a qualidade do produto seco, foi feito o teste de bebida. Paralelamente, realizou-se a secagem em terreiro para se formar a testemunha. Os resultados observados permitiram concluir que o silo secador alambrado apresentou uma boa eficiência energética, proporcionando um produto seco com o mesmo padrão de qualidade do café seco em terreiro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents in a simulated environment, to analyze the length of cable needed counterweight connected to ground rod, able to avoid the phenomenon of flashover return, back flashover, the insulator chains of transmission lines consisting of concrete structures when they are subjected to lightning standardized regarding certain resistivity values of some kinds of soil and geometric arrangements of disposal of grounding systems structures

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were performed to study the effect of surface properties of a vertical channel heated by a source of thermal radiation to induce air flow through convection. Two channels (solar chimney prototype) were built with glass plates, forming a structure of truncated pyramidal geometry. We considered two surface finishes: transparent and opaque. Each stack was mounted on a base of thermal energy absorber with a central opening for passage of air, and subjected to heating by a radiant source comprises a bank of incandescent bulbs and were performed field tests. Thermocouples were fixed on the bases and on the walls of chimneys and then connected to a data acquisition system in computer. The air flow within the chimney, the speed and temperature were measured using a hot wire anemometer. Five experiments were performed for each stack in which convective flows were recorded with values ranging from 17 m³ / h and 22 m³ / h and air flow velocities ranging from 0.38 m / s and 0.56 m / s for the laboratory tests and air velocities between 0.6 m/s and 1.1m/s and convective airflows between 650 m³/h and 1150 m³/h for the field tests. The test data were compared to those obtained by semi-empirical equations, which are valid for air flow induced into channels and simulated data from 1st Thermodynamics equation. It was found that the chimney with transparent walls induced more intense convective flows than the chimney with matte finish. Based on the results obtained can be proposed for the implementation of prototype to exhaust fumes, mists, gases, vapors, mists and dusts in industrial environments, to help promote ventilation and air renewal in built environments and for drying materials, fruits and seeds

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lubricant is responsible for reducing the wear on the friction protect the metal against oxidation, corrosion and dissipates excess heat, making it essential for the balance of a mechanical system, consequently prolonging the useful life of such a system. The origin of lubricating oils is usually mineral being extracted from the petroleum. But the search for a new source of production of lubricants and fuels it is necessary to meet future demands and reduce the possible environmental damage. For this reason, looking alternative means to produce certain products derived from petroleum, such as biodiesel, for example. Returning to the realm of lubricants, also one realizes this need for new raw materials for their production. Vegetable oil is a renewable resource and biodegradable, and its use entails advantages in environmental, social and economic. The development of this project aims to characterize the carnauba oil as a lubricant plant, or biolubricant. To analyze the oil carnauba tests as checking density, flash point, fire point, viscosity, viscosity, acid number, pH, copper corrosion, thermal conductivity and thermal resistivity were developed. In addition, for conducting the wear on the friction and the gradient of the system temperature, the analysis equipment is designed for wear on the friction. Based on these results, it is observed that the oil carnauba show good correlation to its application as biolubricant

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoelectric Refrigerators (TEC Thermoelectric Cooling) are solid-state heat pumps used in applications where stabilization of temperature cycles or cooling below the room temperature are required. TEC are based on thermoelectric devices, and these in turn, are based on the Peltier effect, which is the production of a difference in temperature when an electric current is applied to a junction formed by two non-similar materials. This is one of the three thermoelectric effects and is a typical semiconductor junction phenomenon. The thermoelectric efficiency, known as Z thermoelectric or merit figure is a parameter that measures the quality of a thermoelectric device. It depends directly on electrical conductivity and inversely on the thermal conductivity. Therefore, good thermoelectric devices have typically high values of electrical conductivity and low values of thermal conductivity. One of the most common materials in the composition of thermoelectric devices is the semiconductor bismuth telluride (Bi2Te3) and its alloys. Peltier plates made up by crystals of semiconductor P-type and N-type are commercially available for various applications in thermoelectric systems. In this work, we characterize the electrical properties of bismuth telluride through conductivity/resistivity of the material, and X-rays power diffraction and magnetoresistance measurements. The results were compared with values taken from specific literature. Moreover, two techniques of material preparation, and applications in refrigerators, are discussed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the first part of this work our concern was to investigate the thermal effects in organic crystals using the theory of the polarons. To analyse such effect, we used the Fröhlich s Hamiltonian, that describes the dynamics of the polarons, using a treatment based on the quantum mechanics, to elucidate the electron-phonon interaction. Many are the forms to analyzing the polaronic phenomenon. However, the measure of the dielectric function can supply important information about the small polarons hopping process. Besides, the dielectric function measures the answer to an applied external electric field, and it is an important tool for the understanding of the many-body effects in the normal state of a polaronic system. We calculate the dielectric function and its dependence on temperature using the Hartree-Fock decoupling method. The dieletric function s dependence on the temperature is depicted by through a 3D graph. We also analyzed the so called Arrhenius resistivity, as a functionof the temperature, which is an important tool to characterize the conductivity of an organic molecule. In the second part we analyzed two perovskita type crystalline oxides, namely the cadmium silicate triclinic (CdSiO3) and the calcium plumbate orthorhombic (CaPbO3), respectively. These materials are normally denominated ABO3 and they have been especially investigated for displaying ferroelectric, piezoelectric, dielectrics, semiconductors and superconductors properties. We found our results through ab initio method within the functional density theory (DFT) in the GGA-PBE and LDA-CAPZ approximations. After the geometry optimization for the two structure using the in two approximations, we found the structure parameters and compared them with the experimental data. We still determined further the angles of connection for the two analyzed cases. Soon after the convergence of the energy, we determined their band structures, fundamental information to characterize the nature of the material, as well as their dielectrics functions, optical absorption, partial density of states and effective masses of electrons and holes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study will show the capability of the reactive/nonreactive sputtering (dc/rf) technique at low power for the growth of nanometric thin films from magnetic materials (FeN) and widegap semiconductors (AlN), as well as the technological application of the Peltier effect using commercial modules of bismuth telluride (Bi2Te3). Of great technological interest to the high-density magnetic recording industry, the FeN system represents one of the most important magnetic achievements; however, diversity of the phases formed makes it difficult to control its magnetic properties during production of devices. We investigated the variation in these properties using ferromagnetic resonance, MOKE and atomic force microscopy (AFM), as a function of nitrogen concentration in the reactive gas mixture. Aluminum nitride, a component of widegap semiconductors and of considerable interest to the electronic and optoelectronic industry, was grown on nanometric thin film for the first time, with good structural quality by non-reactive rf sputtering of a pure AlN target at low power (≈ 50W). Another finding in this study is that a long deposition time for this material may lead to film contamination by materials adsorbed into deposition chamber walls. Energy-dispersive X-ray (EDX) analysis shows that the presence of magnetic contaminants from previous depositions results in grown AlN semiconductor films exhibiting magnetoresistance with high resistivity. The Peltier effect applied to commercially available compact refrigeration cells, which are efficient for cooling small volumes, was used to manufacture a technologically innovative refrigerated mini wine cooler, for which a patent was duly registered

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of the superconductivity of MgB(2) was of great importance, because this material is one of the few known binary compounds and has one of the highest critical temperatures (39 degrees K). As MgB(2) is a granular compound, it is fundamentally important to understand the mechanisms of the interaction of the defects and the crystalline lattice, in addition to the eventual processes involving the grain boundaries that compose the material. In this sense, the mechanical spectroscopy measurements constitute a powerful tool for this study, because through them we can obtain important information about phase transitions, the behavior of interstitial or substitutional elements, dislocations, grain boundaries, diffusion, instabilities, and other imperfections of the lattice. For this paper, the samples were prepared using the PIT method and were characterized by density, X-ray diffraction, scanning electron microscopy, electric resistivity, magnetization, and mechanical spectroscopy. The samples were measured in their as-cast condition and after an ultra-high-vacuum heat treatment. The results showed complex spectra, in which were identified relaxation processes due to dislocation movement, interaction among interstitial elements and dislocations, auto-diffusion, and movement of grain boundaries. Some of these processes disappeared with the heat treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)