953 resultados para Agriculture and energy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The TiO2 gel doped with UO22+ and Eu3+ has been prepared by a sol-gel method. The quenching of the UO22+ emission by Eu3+ and the energy transfer from the excited state of UO22+ to the ground state oh Eu3+ have been investigated. The energy transfer has been studied by the measurement of luminescence lifetime tau, calculations of energy transfer efficiency eta(ET) and energy transfer rate W-ET The experimental results indicated that the quenching is combined static and dynamic mechanism, but the static mechanism is dominant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was designed to examine whether photoperiod alone was effective to induce seasonal regulations in physiology in root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau noted for its extreme cold environment. Root voles were randomly assigned into either long photoperiod (LD; 16L: 8D) or short photoperiod (SD; 8L: 16D) for 4 weeks at constant temperature (20 degrees C). At the end of acclimation, SD voles showed lower body mass and body fat coupled with higher energy intake than LD voles. SD greatly enhanced thermogenic capacities in root voles, as indicated by elevated basal metabolic rate (BMR), nonshivering thermogenesis (NST), mitochondrial protein content and uncoupling protein-1 (UCP1) content in brown adipose tissue (BAT). Although no variations in serum leptin levels were found between SD and LD voles, serum leptin levels were positively correlated with body mass and body fat mass, and negatively correlated with energy intake and UCP1 content in BAT, respectively. To summarize, SD alone is effective in inducing higher thermogenic capacities and energy intake coupled with lower body mass and body fat mass in root voles. Leptin is potentially involved in the photoperiod induced body mass regulation and thermogenesis in root voles. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photonic crystals (PhCs) influence the propagation of light by their periodic variation in dielectric contrast or refractive index. This review outlines the attractive optical qualities inherent to most PhCs namely the presence of full or partial photonic band gaps and the possibilities they present towards the inhibition of spontaneous emission and the localization of light. Colloidal self-assembly of polymer or silica spheres is one of the most favoured and low cost methods for the formation of PhCs as artificial opals. The state of the art in growth methods currently used for colloidal self-assembly are discussed and the use of these structures for the formation of inverse opal architectures is then presented. Inverse opal structures with their porous and interconnected architecture span several technological arenas - optics and optoelectronics, energy storage, communications, sensor and biological applications. This review presents several of these applications and an accessible overview of the physics of photonic crystal optics that may be useful for opal and inverse opal researchers in general, with a particular emphasis on the recent use of these three-dimensional porous structures in electrochemical energy storage technology. Progress towards all-optical integrated circuits may lie with the concepts of the photonic crystal, but the unique optical and structural properties of these materials and the convergence of PhC and energy storage disciplines may facilitate further developments and non-destructive optical analysis capabilities for (electro)chemical processes that occur within a wide variety of materials in energy storage research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social tariffs are, along with transfer payments and energy efficiency measures, an instrument to alleviate energy poverty. The name of the Spanish social tariff is “bono social”, and it was established in 2009. To qualify for bono social, the electricity consumer should meet any of the socioeconomic requirements stipulated by law and contract the electricity supply with a “comercializadora de referencia”, companies that are required to offer the bono social by law.Renewable energy cooperatives, a recent phenomenon in Spain, are not comercializadoras de referencia, so they are not obliged to offer the bono social. This does not mean there are no cooperative members at risk of energy poverty or vulnerable consumers.This study has two objectives. The first is to sketch the socioeconomic profile of members of the renewable energy cooperatives. The second is to analyze if these members are entitled to the bono social, or would be to other subsidized prices with different requirements to those of the bono social.For this purpose, we conducted a survey to members of the largest renewable energy cooperative in Spain, Som Energia. The results show that the members of renewable energy cooperatives are exposed to energy poverty risk, although its reach depends on the definition of vulnerable consumer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy intake in 15-20% of the UK older population is currently thought to be inadequate for health. Based on the suggestion that increases in food pleasantness and familiarity can increase intake, this study investigated the impact of the addition of sauce to an older person's meal on subsequent intake. Twenty-eight older people consumed two meals with sauce and the same two meals without sauce on different occasions, and amount consumed in terms of weight, energy and energy consumed from carbohydrate, fat and protein were compared. Pre-meal hunger and desire to eat, post-meal pleasantness and familiarity and participants' expectations of the effects of sauces were also measured. Compared to meals without sauce, meals with sauce were found to result in greater intakes of energy, energy consumed from protein and energy consumed from fat (smallest t(27)=2.13, p=0.04). No differences between conditions were found in measures of pre-meal hunger and desire to eat, or post-meal pleasantness and familiarity (largest t(27) = 1.47, p = 0.15). Similar effects were also found when participant expectations were taken into account, and no differences between participants who expected sauces to affect intake vs. those who did not expect sauces to affect intake were found (largest F(1, 26) = 1.70, p=0.20). These findings suggest that the addition of sauce to an older person's meal can result in increases in intake and may be beneficial for preventing or treating under-nutrition in these individuals, although the mechanisms by which sauces can increase intake are unlikely to be related to pleasantness and familiarity. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim
The aim of this study was to use a prospective longitudinal study to describe age-related trends in energy efficiency during gait, activity, and participation in ambulatory children with cerebral palsy (CP).

Method
Gross Motor Function Measure (GMFM), Paediatric Evaluation of Disability Inventory (PEDI), and Lifestyle Assessment Questionnaire-Cerebral Palsy (LAQ-CP) scores, and energy efficiency (oxygen cost) during gait were assessed in representative sample of 184 children (112 male; 72 female; mean age 10y 9mo; range 4–16y) with CP. Ninety-four children had unilateral spastic CP, 84 bilateral spastic CP, and six had other forms of CP. Fifty-seven were classified as Gross Motor Function Classification System (GMFCS) level I, 91 as level II, 22 as level III, and 14 as level IV). Assessments were carried out on two occasions (visit 1 and visit 2) separated by an interval of 2 years and 7 months. A total of 157 participants returned for reassessment.

Results
Significant improvements in mean raw scores for GMFM, PEDI, and LAQ-CP were recorded; however, mean raw oxygen cost deteriorated over time. Age-related trends revealed gait to be most inefficient at the age of 12 years, but GMFM scores continued to improve until the age of 13 years, and two PEDI subscales to age 14 years, before deteriorating (p<0.05). Baseline score was consistently the single greatest predictor of visit 2 score. Substantial agreement in GMFCS ratings over time was achieved (?lw=0.74–0.76).

Interpretation
These findings have implications in terms of optimal provision and delivery of services for young people with CP to maximize physical capabilities and maintain functional skills into adulthood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-resonant multiphoton ionization combined with quadrupole and time-of-flight analysis has been used to study sputtering by both atomic and molecular ion beams. The mass spectra and energy distributions of both sputtered atoms and secondary ions produced by 3.6 keV Ar+, N+, N-2(+), CF2+ and CF3+ ion bombardment at 45 degrees to a polycrystalline copper target have been measured. The energy distributions of the copper ions and atoms are found to be different and quite complex. The ion distributions can generally be described by a linear collision cascade model, with possible evidence for a knock-on contribution. The sputtered atom distributions are partially described by a combination of linear collision cascade and dense cascade (thermal spike) models. This is interpreted as support for a time-evolving sputtering mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a multiple femtocell deployment in a small area which shares spectrum with the underlaid macrocell. We design a joint energy and radio spectrum scheme which aims not only for co-existence with the macrocell, but also for an energy-efficient implementation of the multi-femtocells. Particularly, aggregate energy usage on dense femtocell channels is formulated taking into account the cost of both the spectrum and energy usage. We investigate an energy-and-spectral efficient approach to balance between the two costs by varying the number of active sub-channels and their energy. The proposed scheme is addressed by deriving closed-form expressions for the interference towards the macrocell and the outage capacity. Analytically, discrete regions under which the most promising outage capacity is achieved by the same size of active sub-channels are introduced. Through a joint optimization of the sub-channels and their energy, properties can be found for the maximum outage capacity under realistic constraints. Using asymptotic and numerical analysis, it can be noticed that in a dense femtocell deployment, the optimum utilization of the energy and the spectrum to maximize the outage capacity converges towards a round-robin scheduling approach for a very small outage threshold. This is the inverse of the traditional greedy approach. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer extrusion, in which a polymer is melted and conveyed to a mould or die, forms the basis of most polymer processing techniques. Extruders frequently run at non-optimised conditions and can account for 15–20% of overall process energy losses. In times of increasing energy efficiency such losses are a major concern for the industry. Product quality, which depends on the homogeneity and stability of the melt flow which in turn depends on melt temperature and screw speed, is also an issue of concern of processors. Gear pumps can be used to improve the stability of the production line, but the cost is usually high. Likewise it is possible to introduce energy meters but they also add to the capital cost of the machine. Advanced control incorporating soft sensing capabilities offers opportunities to this industry to improve both quality and energy efficiency. Due to strong correlations between the critical variables, such as the melt temperature and melt pressure, traditional decentralized PID (Proportional–Integral–Derivative) control is incapable of handling such processes if stricter product specifications are imposed or the material is changed from one batch to another. In this paper, new real-time energy monitoring methods have been introduced without the need to install power meters or develop data-driven models. The effects of process settings on energy efficiency and melt quality are then studied based on developed monitoring methods. Process variables include barrel heating temperature, water cooling temperature, and screw speed. Finally, a fuzzy logic controller is developed for a single screw extruder to achieve high melt quality. The resultant performance of the developed controller has shown it to be a satisfactory alternative to the expensive gear pump. Energy efficiency of the extruder can further be achieved by optimising the temperature settings. Experimental results from open-loop control and fuzzy control on a Killion 25 mm single screw extruder are presented to confirm the efficacy of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal stability is of major importance in polymer extrusion, where product quality is dependent upon the level of melt homogeneity achieved by the extruder screw. Extrusion is an energy intensive process and optimisation of process energy usage while maintaining melt stability is necessary in order to produce good quality product at low unit cost. Optimisation of process energy usage is timely as world energy prices have increased rapidly over the last few years. In the first part of this study, a general discussion was made on the efficiency of an extruder. Then, an attempt was made to explore correlations between melt thermal stability and energy demand in polymer extrusion under different process settings and screw geometries. A commodity grade of polystyrene was extruded using a highly instrumented single screw extruder, equipped with energy consumption and melt temperature field measurement. Moreover, the melt viscosity of the experimental material was observed by using an off-line rheometer. Results showed that specific energy demand of the extruder (i.e. energy for processing of unit mass of polymer) decreased with increasing throughput whilst fluctuation in energy demand also reduced. However, the relationship between melt temperature and extruder throughput was found to be complex, with temperature varying with radial position across the melt flow. Moreover, the melt thermal stability deteriorated as throughput was increased, meaning that a greater efficiency was achieved at the detriment of melt consistency. Extruder screw design also had a significant effect on the relationship between energy consumption and melt consistency. Overall, the relationship between the process energy demand and thermal stability seemed to be negatively correlated and also it was shown to be highly complex in nature. Moreover, the level of process understanding achieved here can help to inform selection of equipment and setting of operating conditions to optimise both energy and thermal efficiencies in parallel. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proliferation problem of video streaming applications and mobile devices has prompted wireless network operators to put more efforts into improving quality of experience (QoE) while saving resources that are needed for high transmission rate and large size of video streaming. To deal with this problem, we propose an energy-aware rate and description allocation optimization method for video streaming in cellular network assisted device-to-device (D2D) communications. In particular, we allocate the optimal bit rate to each layer of video segments and packetize the segments into multiple descriptions with embedded forward error correction (FEC) for realtime streaming without retransmission. Simultaneously, the optimal number of descriptions is allocated to each D2D helper for transmission. The two allocation processes are done according to the access rate of segments, channel state information (CSI) of D2D requester, and remaining energy of helpers, to gain the highest optimization performance. Simulation results demonstrate that our proposed method (named OPT) significantly enhances the performance of video streaming in terms of high QoE and energy saving.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CCAAT enhancer binding protein α (C/EBPα) plays an essential role in cellular differentiation, growth, and energy metabolism. Here, we investigate the correlation between C/EBPα and hepatocellular carcinoma (HCC) patient outcomes and how C/EBPα protects cells against energy starvation. Expression of C/EBPα protein was increased in the majority of HCCs examined (191 pairs) compared with adjacent nontumor liver tissues in HCC tissue microarrays. Its upregulation was correlated significantly with poorer overall patient survival in both Kaplan-Meier survival (P = 0.017) and multivariate Cox regression (P = 0.028) analyses. Stable C/EBPα-silenced cells failed to establish xenograft tumors in nude mice due to extensive necrosis, consistent with increased necrosis in human C/EBPα-deficient HCC nodules. Expression of C/EBPα protected HCC cells in vitro from glucose and glutamine starvation-induced cell death through autophagy-involved lipid catabolism. Firstly, C/EBPα promoted lipid catabolism during starvation, while inhibition of fatty acid beta-oxidation significantly sensitized cell death. Secondly, autophagy was activated in C/EBPα-expressing cells, and the inhibition of autophagy by ATG7 knockdown or chloroquine treatment attenuated lipid catabolism and subsequently sensitized cell death. Finally, we identified TMEM166 as a key player in C/EBPα-mediated autophagy induction and protection against starvation.

CONCLUSION: The C/EBPα gene is important in that it links HCC carcinogenesis to autophagy-mediated lipid metabolism and resistance to energy starvation; its expression in HCC predicts poorer patient prognosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern control methods like optimal control and model predictive control (MPC) provide a framework for simultaneous regulation of the tracking performance and limiting the control energy, thus have been widely deployed in industrial applications. Yet, due to its simplicity and robustness, the conventional P (Proportional) and PI (Proportional–Integral) control are still the most common methods used in many engineering systems, such as electric power systems, automotive, and Heating, Ventilation and Air Conditioning (HVAC) for buildings, where energy efficiency and energy saving are the critical issues to be addressed. Yet, little has been done so far to explore the effect of its parameter tuning on both the system performance and control energy consumption, and how these two objectives are correlated within the P and PI control framework. In this paper, the P and PI controllers are designed with a simultaneous consideration of these two aspects. Two case studies are investigated in detail, including the control of Voltage Source Converters (VSCs) for transmitting offshore wind power to onshore AC grid through High Voltage DC links, and the control of HVAC systems. Results reveal that there exists a better trade-off between the tracking performance and the control energy through a proper choice of the P and PI controller parameters.