950 resultados para Aglycone metabolite
Resumo:
In den letzten Jahren stieg in Deutschland der Gebrauch bzw. Missbrauch von Opioid-Analgetika zunehmend an. Das entwickelte Verfahren sollte unter Einbeziehung neuer Substanzen möglichst viele verschiedene Opioide und auch ihre pharmakologisch aktiven Stoffwechselprodukte berücksichtigen.rnVor Analyse wurden Blut-, Serum- oder Urinproben mit Phosphatpuffer versetzt und mittels Festphasenextraktion an C18-Säulenmaterial aufgearbeitet. Post-Mortem-Gewebematerial wurde mit isotonischer Kochsalzlösung versetzt, homogenisiert und anschließend durch eine Festphasenextraktion aufgereinigt. Haarproben wurden nach Zerkleinerung mit Methanol unter Ultrabeschallung extrahiert. Die Flüssigchromatographie gekoppelt mit Tandem-Massenspektrometrie (Elektrosprayionisation im positiven Modus) erwies sich als geeignetes Verfahren für die simultane Bestimmung der Opioide in biologischem Probenmaterial (Körperflüssigkeiten, Gewebe und Haaren). Der Multi-Analyt Assay erlaubt die quantitative Analyse von 35 verschiedenen Opioiden. Die Analyten wurden durch eine Phenyl-Hexyl Säule und einen Wasser/Acetonitril Gradienten durch eine UPLC 1290 Infinity gekoppelt mit einem 6490 Triple Quadrupol von Agilent Technologies separiert.rnDie LC/MS Methode zur simultanen Bestimmung von 35 Opioiden in Serum und Haaren wurde nach den Richtlinien der Gesellschaft für Toxikologische und Forensische Chemie (GTFCh) validiert. Im Fall der Serumvalidierung lagen die Nachweisgrenzen zwischen 0.02 und 0.6 ng/ml und die Bestimmungsgrenzen im Bereich von 0.1 bis 2.0 ng/ml. Die Kalibrationskurven waren für die Kalibrationslevel 1 bis 6 linear. Wiederfindungsraten lagen für alle Verbindungen zwischen 51 und 88 %, außer für Alfentanil, Bisnortiliidn, Pethidin und Morphin-3-Glucuronid. Der Matrixeffekt lag zwischen 86 % (Ethylmorphin) und 105 % (Desomorphin). Für fast alle Analyten konnten akzeptable Werte bei der Bestimmung der Genauigkeit und Richtigkeit nach den Richtlinien der GTFCh erhalten werden. Im Fall der Validierung der Haarproben lagen die Nachweisgrenzen zwischen 0.004 und 0.6 ng/Probe und die Bestimmungsgrenzen zwischen 0.1 ng/Probe und 2.0 ng/Probe. Für die Kalibrationslevel 1 bis 6 waren alle Kalibrationsgeraden linear. Die Wiederfindungsraten lagen für die Opioide im Bereich von 73.5 % (Morphin-6-Glucuronid) und 114.1 % (Hydrocodon). Die Werte für die Bestimmung der Richtigkeit lagen zwischen - 6.6 % (Methadon) und + 11.7 % (Pholcodin). Präzisionsdaten wurden zwischen 1.0 % für Dextromethorphan und 11.5 % für Methadon ermittelt. Die Kriterien der GTFCh konnten bei Ermittlung des Matrixeffekts für alle Substanzen erfüllt werden, außer für 6-Monoacetylmorphin, Bisnortilidin, Meperidin, Methadon, Morphin-3-glucuronid, Morphin-6-glucuronid, Normeperidin, Nortilidin und Tramadol.rnZum Test des Verfahrens an authentischem Probenmaterial wurden 206 Proben von Körperflüssigkeiten mit Hilfe der simultanen LC/MS Screening Methode untersucht. Über 150 Proben wurden im Rahmen von forensisch-toxikologischen Untersuchungen am Instituts für Rechtsmedizin Mainz analysiert. Dabei konnten 23 der 35 Opioide in den realen Proben nachgewiesen werden. Zur Untersuchung der Pharmakokinetik von Opioiden bei Patienten der anästhesiologischen Intensivstation mit Sepsis wurden über 50 Blutproben untersucht. Den Patienten wurde im Rahmen einer klinischen Studie einmal täglich vier Tage lang Blut abgenommen. In den Serumproben wurde hauptsächlich Sufentanil (0.2 – 0.8 ng/ml in 58 Fällen) und Piritramid (0.4 – 11 ng/ml in 56 Fällen) gefunden. Außerdem wurden die Proben von Körperflüssigkeiten und Gewebe von 13 verschiedenen Autopsiefällen mit Hilfe des Multi-Analyt Assays auf Opioide untersucht.rnIn einem zweiten Schritt wurde die Extraktions- und Messmethode zur Quantifizierung der 35 Opioide am Forensic Medicine Center in Ho Chi Minh City (Vietnam) etabliert. Insgesamt wurden 85 Herzblutproben von Obduktionsfällen mit Verdacht auf Opiatintoxikation näher untersucht. Der überwiegende Teil der untersuchten Fälle konnte auf eine Heroin- bzw. Morphin-Vergiftung zurückgeführt werden. Morphin wurde in 68 Fällen im Konzentrationsbereich 1.7 – 1400 ng/ml und der Heroinmetabolit 6-Monoactetylmorphin in 34 Fällen (0.3 – 160 ng/ml) nachgewiesen werden.rnSchließlich wurden noch 15 Haarproben von Patienten einer psychiatrischen Klinik, die illegale Rauschmittel konsumiert hatten, mit Hilfe der simultanen Opioid-LC/MS Screeningmethode gemessen. Die Ergebnisse der Untersuchung wurden mit früheren Auswertungen von gaschromatographischen Analysen verglichen. Es zeigte sich eine weitgehende Übereinstimmung der Untersuchungsergebnisse für die Opioide 6-Monoacetylmorphin, Morphin, Codein, Dihydrocodein und Methadon. Mit der LC/MS Methode konnten weitere Substanzen, wie zum Beispiel Bisnortilidin, Dextromethorphan und Tramadol in den Haarproben gefunden werden, die bislang nicht entdeckt worden waren.rn
Resumo:
This study investigates the growth and metabolite production of microorganisms causing spoilage of Atlantic cod (Gadus morhua) fillets packaged under air and modified atmosphere (60 % CO2, 40 % O2). Samples were provided by two different retailers (A and B). Storage of packaged fillets occurred at 4 °C and 8 °C. Microbiological quality and metabolite production of cod fillets stored in MAP 4 °C, MAP 8 °C and air were monitored during 13 days, 7 days and 3 days of storage, respectively. Volatile compounds concentration in the headspace were quantified by Selective ion flow tube mass spectrometry and a correlation with microbiological spoilage was studied. The onset of volatile compounds detection was observed to be mostly around 7 log cfu/g of total psychrotrophic count. Trimethylamine and dimethyl sulfide were found to be the dominant volatiles in all of the tested storage conditions, nevertheless there was no close correlation between concentrations of each main VOC and percentages of rejection based on sensory evaluation. According to results it was concluded that they cannot be considered as only indicators of the quality of cod fillets stored in modified atmosphere and air.
Resumo:
A liquid chromatographic-mass spectrometric assay with atmospheric pressure chemical ionization for quantification of ondansetron and its main metabolite 8-hydroxyondansetron in human plasma was presented. The enantiomeric separation was achieved on a Chiralcel OD-R column containing cellulose tris-(3,5-dimethylphenylcarbamate). The validation data were within the required limits. The assay was successfully applied to authentic plasma samples. Quantitative results from postoperative patients receiving ondansetron demonstrated a great interindividual variability in postoperative plasma drug concentrations, the metabolites were not detected in their unconjugated form. A wide variation in the S-(+)-/R-(-)-ondansetron concentration ratio between 0.14 and 7.18 is indicative for a stereoselective disposition or metabolism. In further studies CYP2D6 and CYP3A4 genotype dependent metabolism of ondansetron enantiomers as well as of co-administered drugs and clinical efficacy of the medication should be tested.
Resumo:
Sphingosine-1-phosphate (S1P) acts as high affinity agonist at specific G-protein-coupled receptors, S1P(1-5), that play important roles e.g. in the cardiovascular and immune systems. A S1P receptor modulating drug, FTY720 (fingolimod), has been effective in phase III clinical trials for multiple sclerosis. FTY720 is a sphingosine analogue and prodrug of FTY720-phosphate, which activates all S1P receptors except S1P(2) and disrupts lymphocyte trafficking by internalizing the S1P(1) receptor. Cis-4-methylsphingosine (cis-4M-Sph) is another synthetic sphingosine analogue that is readily taken up by cells and phosphorylated to cis-4-methylsphingosine-1-phosphate (cis-4M-S1P). Therefore, we analysed whether cis-4M-Sph interacted with S1P receptors through its metabolite cis-4M-S1P in a manner similar to FTY720. Indeed, cis-4M-Sph caused an internalization of S1P receptors, but differed from FTY720 as it acted on S1P(2) and S1P(3) and only weakly on S1P(1), while FTY720 internalized S1P(1) and S1P(3) but not S1P(2). Consequently, pre-incubation with cis-4M-Sph specifically desensitized S1P-induced [Ca(2+)](i) increases, which are mediated by S1P(2) and S1P(3), in a time- and concentration-dependent manner. This effect was not shared by sphingosine or FTY720, indicating that metabolic stability and targeting of S1P(2) receptors were important. The desensitization of S1P-induced [Ca(2+)](i) increases was dependent on the expression of SphKs, predominantly of SphK2, and thus mediated by cis-4M-S1P. In agreement, cis-4M-S1P was detected in the supernatants of cells exposed to cis-4M-Sph. It is concluded that cis-4M-Sph, through its metabolite cis-4M-S1P, acts as a S1P receptor modulator and causes S1P receptor internalization and desensitization. The data furthermore help to define requirements for sphingosine kinase substrates as S1P receptor modulating prodrugs.
Resumo:
The use of water suppression for in vivo proton MR spectroscopy diminishes the signal intensities from resonances that undergo magnetization exchange with water, particularly those downfield of water. To investigate these exchangeable resonances, an inversion transfer experiment was performed using the metabolite cycling technique for non-water-suppressed MR spectroscopy from a large brain voxel in 11 healthy volunteers at 3.0 T. The exchange rates of the most prominent peaks downfield of water were found to range from 0.5 to 8.9 s(-1), while the T(1) relaxation times in absence of exchange were found to range from 175 to 525 ms. These findings may help toward the assignments of the downfield resonances and a better understanding of the sources of contrast in chemical exchange saturation transfer imaging.
Resumo:
Metabolite identification and metabolite profiling are of major importance in the pharmaceutical and clinical context. However, highly polar and ionic substances are rarely included as analytical tools are missing. In this study, we present a new method for the determination of urinary sulfates, sulfonates, phosphates and other anions of strong acids. The method comprises a CE separation using an acidic BGE (pH
Resumo:
Differentiation between external contamination and incorporation of drugs or their metabolites from inside the body via blood, sweat or sebum is a general issue in hair analysis and of high concern when interpreting analytical results. In hair analysis for cannabinoids the most common target is Delta9-tetrahydrocannabinol (THC), sometimes cannabidiol (CBD) and cannabinol (CBN) are determined additionally. After repeated external contamination by cannabis smoke these analytes are known to be found in hair even after performing multiple washing steps. A widely accepted strategy to unequivocally prove active cannabis consumption is the analysis of hair extracts for the oxidative metabolite 11-nor-9-carboxy-THC (THC-COOH). Although the acidic nature of this metabolite suggests a lower rate of incorporation into the hair matrix compared to THC, it is not fully understood up to now why hair concentrations of THC-COOH are generally found to be much lower (mostly <10 pg/mg) than the corresponding THC concentrations. Delta9-Tetrahydrocannabinolic acid A (THCA A) is the preliminary end product of the THC biosynthesis in the cannabis plant. Unlike THC it is non-psychoactive and can be regarded as a 'precursor' of THC being largely decarboxylated when heated or smoked. The presented work shows for the first time that THCA A is not only detectable in blood and urine of cannabis consumers but also in THC positive hair samples. A pilot experiment performed within this study showed that after oral intake of THCA A on a regular basis no relevant incorporation into hair occurred. It can be concluded that THCA A in hair almost exclusively derives from external contamination e.g. by side stream smoke. Elevated temperatures during the analytical procedure, particularly under alkaline conditions, can lead to decarboxylation of THCA A and accordingly increase THC concentrations in hair. Additionally, it has to be kept in mind that in hair samples tested positive for THCA A at least a part of the 'non-artefact' THC probably derives from external contamination as well, because in condensate of cannabis smoke both THC and THCA A are present in relevant amounts. External contamination by side stream smoke could therefore explain the great differences in THC and THC-COOH hair concentrations commonly found in cannabis users.
Resumo:
Phosphatidylethanol (PEth) is a direct ethanol metabolite, and has recently attracted attention as biomarker of ethanol intake. The aims of the current study are: (1) to characterize the normalization time of PEth in larger samples than previously conducted; (2) to elucidate potential gender differences; and (3) to report the correlation of PEth with other biomarkers and self-reported alcohol consumption. Fifty-seven alcohol-dependent patients (ICD 10 F 10.25; 9 females, 48 males) entering medical detoxification at three study sites were enrolled. The study sample was comprised of 48 males and 9 females, with mean age 43.5. Mean gamma glutamyl transpeptidase (GGT) was 209.61 U/l, average mean corpuscular volume (MCV) was 97.35 fl, mean carbohydrate deficient transferrin (%CDT) was 8.68, and mean total ethanol intake in the last 7 days was 1653 g. PEth was measured in heparinized whole blood with a high-pressure liquid chromatography method, while GGT, MCV and %CDT were measured using routine methods. PEth levels at day 1 of detoxification ranged between 0.63 and 26.95 micromol/l (6.22 mean, 4.70 median, SD 4.97). There were no false negatives at day 1. Sensitivities for the other biomarkers were 40.4% for MCV, 73.1% for GGT and 69.2% for %CDT, respectively. No gender differences were found for PEth levels at any time point. Our data suggest that PEth is (1) a suitable intermediate term marker of ethanol intake in both sexes; and (2) sensitivity is extraordinary high in alcohol dependent patients. The results add further evidence to the data that suggest that PEth has potential as a candidate for a sensitive and specific biomarker, which reflects longer-lasting intake of higher amounts of alcohol and seemingly has the above mentioned certain advantages over traditional biomarkers.
Resumo:
Garlic extracts have been shown to decrease drug exposure for saquinavir, a P-glycoprotein and cytochrome P450 3A4 substrate. In order to explore the underlying mechanisms and to study the effects of garlic on pre-systemic drug elimination, healthy volunteers were administered garlic extract for 21 days. Prior to and at the end of this period, expression of duodenal P-glycoprotein and cytochrome P450 3A4 protein were assayed and normalized to villin, while hepatic cytochrome P450 3A4 function and simvastatin, pravastatin and saquinavir pharmacokinetics were also evaluated. Ingestion of garlic extract increased expression of duodenal P-glycoprotein to 131% (95% CI, 105-163%), without increasing the expression of cytochrome P450 3A4 which amounted to 87% (95% CI, 67-112%), relative to baseline in both cases. For the erythromycin breath test performed, the average result was 96% (95% CI, 83-112%). Ingestion of garlic extract had no effect on drug and metabolite AUCs following a single dose of simvastatin or pravastatin, although the average area under the plasma concentration curve (AUC) of saquinavir decreased to 85% (95% CI, 66-109%), and changes in intestinal P-glycoprotein expression negatively correlated with this change. In conclusion, garlic extract induces intestinal expression of P-glycoprotein independent of cytochrome P450 3A4 in human intestine and liver.
Resumo:
Monepantel is the first drug of a new family of anthelmintics, the amino acetonitrile derivatives (AAD), presently used to treat ruminants infected with gastrointestinal nematodes such as Haemonchus contortus. Monepantel shows an excellent tolerability in mammals and is active against multidrug-resistant parasites, indicating that its molecular target is absent or inaccessible in the host and is different from those of the classic anthelmintics. Genetic approaches with mutant nematodes have suggested acetylcholine receptors of the DEG-3 subfamily as the targets of AADs, an enigmatic clade of ligand-gated ion channels that is specific to nematodes and does not occur in mammals. Here we demonstrate direct interaction of monepantel, its major active metabolite monepantel sulfone, and other AADs with potential targets of the DEG-3 subfamily of acetylcholine receptors. H. contortus DEG-3/DES-2 receptors were functionally expressed in Xenopus laevis oocytes and were found to be preferentially activated by choline, to permeate monovalent cations, and to a smaller extent, calcium ions. Although monepantel and monepantel sulfone did not activate the channels by themselves, they substantially enhanced the late currents after activation of the channels with choline, indicating that these AADs are type II positive allosteric modulators of H. contortus DEG-3/DES-2 channels. It is noteworthy that the R-enantiomer of monepantel, which is inactive as an anthelmintic, inhibited the late currents after stimulation of H. contortus DEG-3/DES-2 receptors with choline. In summary, we present the first direct evidence for interaction of AADs with DEG-3-type acetylcholine receptors and discuss these findings in the context of anthelmintic action of AADs.
Resumo:
Standard methods for the estimation of the postmortem interval (PMI, time since death), based on the cooling of the corpse, are limited to about 48 h after death. As an alternative, noninvasive postmortem observation of alterations of brain metabolites by means of (1)H MRS has been suggested for an estimation of the PMI at room temperature, so far without including the effect of other ambient temperatures. In order to study the temperature effect, localized (1)H MRS was used to follow brain decomposition in a sheep brain model at four different temperatures between 4 and 26°C with repeated measurements up to 2100 h postmortem. The simultaneous determination of 25 different biochemical compounds at each measurement allowed the time courses of concentration changes to be followed. A sudden and almost simultaneous change of the concentrations of seven compounds was observed after a time span that decreased exponentially from 700 h at 4°C to 30 h at 26°C ambient temperature. As this represents, most probably, the onset of highly variable bacterial decomposition, and thus defines the upper limit for a reliable PMI estimation, data were analyzed only up to this start of bacterial decomposition. As 13 compounds showed unequivocal, reproducible concentration changes during this period while eight showed a linear increase with a slope that was unambiguously related to ambient temperature. Therefore, a single analytical function with PMI and temperature as variables can describe the time courses of metabolite concentrations. Using the inverse of this function, metabolite concentrations determined from a single MR spectrum can be used, together with known ambient temperatures, to calculate the PMI of a corpse. It is concluded that the effect of ambient temperature can be reliably included in the PMI determination by (1)H MRS.
Resumo:
This study assessed the pharmacodynamic and pharmacokinetic effects of the interaction between the selective norepinephrine (NE) transporter inhibitor reboxetine and 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") in 16 healthy subjects. The study used a double-blind, placebo-controlled crossover design. Reboxetine reduced the effects of MDMA including elevations in plasma levels of NE, increases in blood pressure and heart rate, subjective drug high, stimulation, and emotional excitation. These effects were evident despite an increase in the concentrations of MDMA and its active metabolite 3,4-methylenedioxyamphetamine (MDA) in plasma. The results demonstrate that transporter-mediated NE release has a critical role in the cardiovascular and stimulant-like effects of MDMA in humans.
Resumo:
Ethyl glucuronide (EtG) and ethyl sulfate (EtS) are direct alcohol consumption markers widely used nowadays for clinical and forensic applications. They are detectable in blood and urine even after consumption of trace amounts of ethanol and for a longer time frame, being detectable even when no more ethanol is present. The instability of EtG against bacterial degradation in contaminated urine samples and/or the possible postcollection synthesis of this metabolite in samples containing, e.g., Escherichia coli and ethanol, may cause false identification of alcohol uptake. Therefore, it is of paramount importance to constrict these error sources by inhibition of any bacterial growth causing hydrolization or synthesis of EtG. This study evaluates a new method of collecting urine samples on filter paper, dried urine spots (DUS), for simultaneous detection of EtG, EtS and creatinine, having the great advantage of inhibiting bacterial activity. In addition, a method validation for the determination of EtG and EtS in DUS was performed according to the FDA guidelines. Sterile-filtered urine was spiked with EtG and EtS, inoculated with E. coli and incubated. Liquid and dried urine samples were collected after various time intervals up to 96 h. Liquid samples were frozen immediately after collection, whereas aliquots for DUS were pipetted onto filter paper, allowed to dry and stored at RT until analysis 1 week after. The specimens were analyzed by LC-ESI-MS/MS. As expected, degradation of EtG, but not of EtS, was observed in contaminated liquid urine samples. However, the specimens collected on filter paper and stored at RT showed no degradation during storage. Therefore, collecting urine samples on filter paper for EtG and EtS analysis turns out to be a reliable method to avoid bacterial degradation of EtG and EtS, and consequently, stabilization of these ethanol metabolites is achieved. In addition, simultaneous measurement of creatinine content as an indicator of urine dilution helps to interpret the results. Method validation for EtG and EtS in DUS was satisfactory, showing the linearity of the calibration curves in the studied concentration range, good precision, accuracy and selectivity.
Resumo:
Background: Alcohol is heavily consumed in sub-Saharan Africa and affects HIV transmission and treatment and is difficult to measure. Our goal was to examine the test characteristics of a direct metabolite of alcohol consumption, phosphatidylethanol (PEth). Methods: Persons infected with HIV were recruited from a large HIV clinic in southwestern Uganda. We conducted surveys and breath alcohol concentration (BRAC) testing at 21 daily home or drinking establishment visits, and blood was collected on day 21 (n = 77). PEth in whole blood was compared with prior 7-, 14-, and 21-day alcohol consumption. Results: (i) The receiver operator characteristic area under the curve (ROC-AUC) was highest for PEth versus any consumption over the prior 21 days (0.92; 95% confidence interval [CI]: 0.86 to 0.97). The sensitivity for any detectable PEth was 88.0% (95% CI: 76.0 to 95.6) and the specificity was 88.5% (95% CI: 69.8 to 97.6). (ii) The ROC-AUC of PEth versus any 21-day alcohol consumption did not vary with age, body mass index, CD4 cell count, hepatitis B virus infection, and antiretroviral therapy status, but was higher for men compared with women (p = 0.03). (iii) PEth measurements were correlated with several measures of alcohol consumption, including number of drinking days in the prior 21 days (Spearman r = 0.74, p < 0.001) and BRAC (r = 0.75, p < 0.001). Conclusions: The data add support to the body of evidence for PEth as a useful marker of alcohol consumption with high ROC-AUC, sensitivity, and specificity. Future studies should further address the period and level of alcohol consumption for which PEth is detectable.
Resumo:
Apolipoprotein J (ApoJ) is a component of plasma high-density lipoproteins. Previous studies have shown progressive recovery of ApoJ sialic acid content with increased duration of alcohol abstinence. Therefore, the sialic acid index of plasma apolipoprotein J (SIJ) seems to be a promising alcohol biomarker. Phosphatidylethanol (PEth) is a direct ethanol metabolite and has recently attracted attention as a biomarker of prolonged intake of higher amounts of alcohol. The aim of the pilot study was to explore sensitivity, specificity, and normalization of SIJ and PEth in comparison with traditional and emerging biomarkers.