896 resultados para Aggregate Claim Amount
Resumo:
Actions for wrongful life, as they have come unfortunately to be styled, encompass various types of claim. These include claims for alleged negligence after conception, those based on negligent advice or diagnosis prior to conception concerning possible effects of treatment given to the child's mother, contraception or sterilisation, or genetic disability. This distinguishes such claims from those for so called wrongful birth, which are claims by parents for the cost of raising either a healthy or a disabled child where the unplanned birth imposes costs on the parents as a result of clinical negligence. Two of the more controversial cases to have reached the High Court of Australia which are if interest to us here in the past decade are Cattanach v Melchior where the court, by a narrow majority (McHugh, Gummow, Kirby and Callinan JJ; Gleeson CJ, Hayne and Heydon dissenting) acknowledged recovery for wrongful birth. In the second joined appeals of Harriton v Stephens and Waller v James; Waller v Hoolahan the court overwhelmingly precluded a ‘wrongful life’ claim (Gleeson CJ, Gummow, Hayne, Callinan, Heydon and Crennan JJ; Kirby J dissenting). Both cases raised issues around the sanctity and value of life and the nature of harm and the assessment of damages, and this brief note affords us the opportunity to consider the way in which the ‘life as legal loss’ arguments were treated by the various judges in both cases.
Resumo:
This paper investigates a wireless sensor network deployment - monitoring water quality, e.g. salinity and the level of the underground water table - in a remote tropical area of northern Australia. Our goal is to collect real time water quality measurements together with the amount of water being pumped out in the area, and investigate the impacts of current irrigation practice on the environments, in particular underground water salination. This is a challenging task featuring wide geographic area coverage (mean transmission range between nodes is more than 800 meters), highly variable radio propagations, high end-to-end packet delivery rate requirements, and hostile deployment environments. We have designed, implemented and deployed a sensor network system, which has been collecting water quality and flow measurements, e.g., water flow rate and water flow ticks for over one month. The preliminary results show that sensor networks are a promising solution to deploying a sustainable irrigation system, e.g., maximizing the amount of water pumped out from an area with minimum impact on water quality.
Resumo:
Agriculture accounts for a significant portion of the GDP in most developed countries. However, managing farms, particularly largescale extensive farming systems, is hindered by lack of data and increasing shortage of labour. We have deployed a large heterogeneous sensor network on a working farm to explore sensor network applications that can address some of the issues identified above. Our network is solar powered and has been running for over 6 months. The current deployment consists of over 40 moisture sensors that provide soil moisture profiles at varying depths, weight sensors to compute the amount of food and water consumed by animals, electronic tag readers, up to 40 sensors that can be used to track animal movement (consisting of GPS, compass and accelerometers), and 20 sensor/actuators that can be used to apply different stimuli (audio, vibration and mild electric shock) to the animal. The static part of the network is designed for 24/7 operation and is linked to the Internet via a dedicated high-gain radio link, also solar powered. The initial goals of the deployment are to provide a testbed for sensor network research in programmability and data handling while also being a vital tool for scientists to study animal behavior. Our longer term aim is to create a management system that completely transforms the way farms are managed.
Resumo:
A vast amount of research into autonomous underwater navigation has, and is, being conducted around the world. However, typical research and commercial platforms have limited autonomy and are generally unable to navigate efficiently within coral reef environments without tethers and significant external infrastructure. This paper outlines the development and presents experimental results into the performance evaluation of a new robotic vehicle for underwater monitoring and surveying in highly unstructured environments. The hybrid AUV design developed by the CSIRO robotic reef monitoring team realises a compromise between endurance, manoeuvrability and functionality. The vehicle represents a new era in AUV design specifically focused at providing a truly lowcost research capability that will progress environmental monitoring through unaided navigation, cooperative robotics, sensor network distribution and data harvesting.
Resumo:
Habitat models are widely used in ecology, however there are relatively few studies of rare species, primarily because of a paucity of survey records and lack of robust means of assessing accuracy of modelled spatial predictions. We investigated the potential of compiled ecological data in developing habitat models for Macadamia integrifolia, a vulnerable mid-stratum tree endemic to lowland subtropical rainforests of southeast Queensland, Australia. We compared performance of two binomial models—Classification and Regression Trees (CART) and Generalised Additive Models (GAM)—with Maximum Entropy (MAXENT) models developed from (i) presence records and available absence data and (ii) developed using presence records and background data. The GAM model was the best performer across the range of evaluation measures employed, however all models were assessed as potentially useful for informing in situ conservation of M. integrifolia, A significant loss in the amount of M. integrifolia habitat has occurred (p < 0.05), with only 37% of former habitat (pre-clearing) remaining in 2003. Remnant patches are significantly smaller, have larger edge-to-area ratios and are more isolated from each other compared to pre-clearing configurations (p < 0.05). Whilst the network of suitable habitat patches is still largely intact, there are numerous smaller patches that are more isolated in the contemporary landscape compared with their connectedness before clearing. These results suggest that in situ conservation of M. integrifolia may be best achieved through a landscape approach that considers the relative contribution of small remnant habitat fragments to the species as a whole, as facilitating connectivity among the entire network of habitat patches.
Resumo:
Clinical experience plays an important role in the development of expertise, particularly when coupled with reflection on practice. There is debate, however, regarding the amount of clinical experience that is required to become an expert. Various lengths of practice have been suggested as suitable for determining expertise, ranging from five years to 15 years. This study aimed to investigate the association between length of experience and therapists’ level of expertise in the field of cerebral palsy with upper limb hypertonicity using an empirical procedure named Cochrane–Weiss–Shanteau (CWS). The methodology involved re-analysis of quantitative data collected in two previous studies. In Study 1, 18 experienced occupational therapists made hypothetical clinical decisions related to 110 case vignettes, while in Study 2, 29 therapists considered 60 case vignettes drawn randomly from those used in Study 1. A CWS index was calculated for each participant's case decisions. Then, in each study, Spearman's rho was calculated to identify the correlations between the duration of experience and level of expertise. There was no significant association between these two variables in both studies. These analyses corroborated previous findings of no association between length of experience and judgemental performance. Therefore, length of experience may not be an appropriate criterion for determining level of expertise in relation to cerebral palsy practice.
Resumo:
A significant amount (ca. 15-25 GL/a) of PRW (Purified Recycled Water) from urban areas is foreseen as augmentation of the depleted groundwater resources of the Lockyer Valley (approx. 80 km west of Brisbane). Theresearch project uses field investigations, lab trials and modelling techniques to address the key challenges: (i) how to determine benefits of individual users from the augmentation of a natural common pool resource; (ii) how to minimise impacts of applying different quality water on the Lockyer soils, to creeks and on aquifier materials; (iii) how to minimuse mobilisation of salts in the unsaturated and saturated zones as a result of increased deep drainage; (iv) determination of potential for direct aquifer recharge using injection wells?
Resumo:
This paper reviews some aspects of calcium phosphate chemistry since phosphate in juice is an important parameter in all sugar juice clarification systems. It uses basic concepts to try and explain the observed differences in clarification performance obtained with various liming techniques. The paper also examines the current colorimetric method used for the determination of phosphate in sugar juice. In this method, a phosphomolybdate blue complex formed due to the addition of a dye is measured at 660 nm. Unfortunately, at this wavelength there is interference of the colour arising from within the juice and results in the underestimation of the amount of soluble inorganic phosphate content of juice. It is suggested that phosphate analysis be conducted at the higher wavelength of 875 nm where the interference of the juice colour is minimised.
Resumo:
This present paper reviews the reliability and validity of visual analogue scales (VAS) in terms of (1) their ability to predict feeding behaviour, (2) their sensitivity to experimental manipulations, and (3) their reproducibility. VAS correlate with, but do not reliably predict, energy intake to the extent that they could be used as a proxy of energy intake. They do predict meal initiation in subjects eating their normal diets in their normal environment. Under laboratory conditions, subjectively rated motivation to eat using VAS is sensitive to experimental manipulations and has been found to be reproducible in relation to those experimental regimens. Other work has found them not to be reproducible in relation to repeated protocols. On balance, it would appear, in as much as it is possible to quantify, that VAS exhibit a good degree of within-subject reliability and validity in that they predict with reasonable certainty, meal initiation and amount eaten, and are sensitive to experimental manipulations. This reliability and validity appears more pronounced under the controlled (but more arti®cial) conditions of the laboratory where the signal : noise ratio in experiments appears to be elevated relative to real life. It appears that VAS are best used in within-subject, repeated-measures designs where the effect of different treatments can be compared under similar circumstances. They are best used in conjunction with other measures (e.g. feeding behaviour, changes in plasma metabolites) rather than as proxies for these variables. New hand-held electronic appetite rating systems (EARS) have been developed to increase reliability of data capture and decrease investigator workload. Recent studies have compared these with traditional pen and paper (P&P) VAS. The EARS have been found to be sensitive to experimental manipulations and reproducible relative to P&P. However, subjects appear to exhibit a signi®cantly more constrained use of the scale when using the EARS relative to the P&P. For this reason it is recommended that the two techniques are not used interchangeably
Resumo:
Over the years, approaches to obesity prevention and treatment have gone from focusing on genetic and other biological factors to exploring a diversity of diets and individual behavior modification interventions anchored primarily in the power of the mind, to the recent shift focusing on societal interventions to design ";temptation-proof"; physical, social, and economic environments. In spite of repeated calls to action, including those of the World Health Organization (WHO), the pandemic continues to progress. WHO recently projected that if the current lifestyle trend in young and adult populations around the world persist, by 2012 in countries like the USA, health care costs may amount to as much as 17.7% of the GDP. Most importantly, in large part due to the problems of obesity, those children may be the first generation ever to have a shorter life expectancy than that of their parents. This work presents the most current research and proposals for addressing the pandemic. Past studies have focused primarly on either genetic or behavioral causes for obesity, however today's research indicates that a strongly integrated program is the best prospect for success in overcoming obesity. Furthermore, focus on the role of society in establishing an affordable, accessible and sustainable program for implementing these lifestyle changes is vital, particularly for those in economically challenged situations, who are ultimately at the highest risk for obesity. Using studies from both neuroscience and behavioral science to present a comprehensive overview of the challenges and possible solutions, The brain-to-society approach to obesity prevention focuses on what is needed in order to sustain a healthy, pleasurable and affordable lifestyle.
Resumo:
The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.