931 resultados para Adsorption isotherm
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The adsorption behavior of the Tet-124 antimicrobial peptide and the Tet-124 peptide modified at the C- and N-terminus with the sequence glycine-3,4-dihydroxyphenylalanine-glycine (G-DOPA-G) on titanium surfaces was studied using quartz crystal micro balance with dissipation (QCM-D). At a low pH level (4.75) Tet-124 and Tet-124-G-DOPA-G form rigid layers. This is attributed to the electrostatic interactions of the positively charged lysine and arginine residues in the peptide sequence with the negatively charged titanium oxide layer. At an elevated pH level (6.9) Tet-124 shows a lower mass adsorption at the surface than Tet-124-G-DOPA-G. This is attributed to the interaction of the catechol due to the formation of complexes with the titanium oxide and titanium surface layer. The C terminal and N terminal modification with the sequence G-DOPA-G shows similar adsorption rate and mass adsorption coverage at saturation; however it is presented a more loosely layers on the G-DOPA-G-TeT-124. Fibroblast adhesion and the biocompatibility test of both the surfaces following modification with Tet-124-G-DOPA-G and the titanium alloy control showed similar results. In addition, no changes in the adhesion of E. coli bacteria due to the modification of the surface were detected.
Resumo:
Synthetic ZrO2 center dot nH(2)O was used for phosphate removal from aqueous solution. The optimum adsorbent dose obtained for phosphate adsorption on to hydrous zirconium oxide was 0.1 g. The kinetic process was described very well by a pseudo-second-order rate model. The phosphate adsorption tended to increase with the decrease in pH. The adsorption capacity increased from 61 to 66 mg g(-1) when the temperature was increased from 298 to 338 K. A phosphate desorption of approximately 74% was obtained using water at pH 12.
Resumo:
Nowadays, there is a great interest in the economic success of direct ethanol fuel cells; however, our atomistic understanding of the designing of stable and low-cost catalysts for the steam reforming of ethanol is still far from satisfactory, in particular due to the large number of undesirable intermediates. In this study, we will report a first-principles investigation of the adsorption properties of ethanol and water at low coverage on close-packed transition-metal (TM) surfaces, namely, Fe(110), Co(0001), Ni(111), Cu(111), Ru(0001), Rh(111), Pd(111), Ag(111), Os(0001), Ir(111), Pt(111), and Au(111), employing density functional theory (DFT) calculations. We employed the generalized gradient approximation with the formulation proposed by Perdew, Burke, and Erzenholf (PBE) to the exchange correlation functional and the empirical correction proposed by S. Grimme (DFT+D3) for the van der Waals correction. We found that both adsorbates binds preferentially near or on the on top sites of the TM surfaces through the 0 atoms. The PBE adsorption energies of ethanol and water decreases almost linearly with the increased occupation of the 4d and 5d d-band, while there is a deviation for the 3d systems. The van der Waals correction affects the linear behavior and increases the adsorption energy for both adsorbates, which is expected as the van der Waals energy due to the correlation effects is strongly underestimated by DFT-PBE for weak interacting systems. The geometric parameters for water/TM are not affected by the van der Waals correction, i.e., both DFT and DFT+D3 yield an almost parallel orientation for water on the TM surfaces; however, DFT+D3 changes drastically the ethanol orientation. For example, DFT yields an almost perpendicular orientation of the C-C bond to the TM surface, while the C-C bond is almost parallel to the surface using DFT +D3 for all systems, except for ethanol/Fe(110). Thus, the van der Waals correction decreases the distance of the C atoms to the TM surfaces, which might contribute to break the C-C bond. The work function decreases upon the adsorption of ethanol and water, and both follow the same trends, however, with different magnitude (larger for ethanol/TM) due to the weak binding of water to the surface. The electron density increases mainly in the region between the topmost layer and the adsorbates, which explains the reduction of the substrate work function.
Resumo:
The adsorption of NO on transition-metal (TM) surfaces has been widely studied by experimental and theoretical techniques; however, our atomistic understanding of the interaction of nitrogen monoxide (NO) with small TM clusters is far from satisfactory, which compromises a deep understanding of real catalyst devices. In this study, we report a density functional theory study of the adsorption properties of NO on the TM13 (TM = Rh, Pd, Ir, Pt) clusters employing the projected augmented wave method. We found that the interaction of NO with TM13 is much more complex than that for NO/TM(111). In particular, for low symmetry TM13 clusters, there is a strong rearrangement of the electronic charge density upon NO adsorption and, as a consequence, the adsorption energy shows a very complex dependence even for adsorption sites with the same local effective coordination. We found a strong enhancement of the binding energy of NO to the TM13 clusters compared with the TM(111) surfaces, as the antibonding NO states are not occupied for NO/TM13, and the general relationship based on the d-band model between adsorption energy and the center of gravity of the occupied d-states does not hold for the studied TM13 clusters, in particular, for clusters with low symmetry. In contrast with the adsorption energy trends, the geometric NO/TM13 parameters and the vibrational N-O frequencies for different coordination sites follow the same trend as for the respective TM(111) surfaces, while the changes in the frequencies between different surfaces and TM13 clusters reflect the strong NO-TM13 interaction.
Resumo:
In this work we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of benzenethiol and diphenyl disulfide with the silicon (001) surface. A direct comparison of different adsorption structures with Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) allow us to identify that benzenethiol and diphenyl disulfide dissociatively adsorb on the silicon surface. In addition, theoretically obtained data suggests that the C6H5SH:Si(001) presents a higher Schottky barrier height contact when compared to other similar aromatic molecules.
Resumo:
Several types of alumina were synthesized from sodium aluminate (NaAlO2) by precipitation with sulfuric acid (H2SO4) and subsequently calcination at 500 degrees C to obtain gamma-Al2O3. The precursor aluminate was derived from aluminum scrap. The various gamma-Al2O3 synthesized were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), adsorption-desorption of N-2 (S-BET) and scanning electron microscopy (SEM). XRD revealed that distinct phases of Al2O3 were formed during thermal treatment. Moreover, it was observed that conditions of synthesis (pH, aging time and temperature) strongly affect the physicochemical properties of the alumina. A high-surface-area alumina (371 m(2) g(-1)) was synthesized under mild conditions, from inexpensive raw materials. These aluminas were tested for the adsorption of Cd(II), Zn(II) and Pb(II) from aqueous solution at toxic metal concentrations, and isotherms were determined. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This article studied the applicability of poly(acrylamide) and methylcellulose (PAAm-MC) hydrogels as potential delivery vehicle for the controlled-extended release of ammonium sulfate (NH(4))(2)SO(4) and potassium phosphate (KH(2)PO(4)) fertilizers. PAAm-MC hydrogels with different acrylamide (AAm) and MC concentrations were prepared by a free radical polymerization method. The adsorption and desorption kinetics of fertilizers were determined using conductivity measurements based on previously built analytical curve. The addition of MC in the PAAm chains increased the quantities of (NH(4))(2)SO(4) and KH(2)PO(4) loaded and extended the time and quantities of fertilizers released. Coherently, both loading and releasing processes were strongly influenced by hydrophilic properties of hydrogels (AAm/MC mass proportion). The best sorption (124.0 mg KH(2)PO(4)/g hydrogel and 58.0 mg (NH(4))(2)SO(4)/g hydrogel) and desorption (54.9 mg KH(2)PO(4)/g hydrogel and 49.5 mg (NH(4))(2)SO(4)/g hydrogel) properties were observed for 6.0% AAm-1.0% MC hydrogels (AAm/MC mass proportion equal 6), indicating that these hydrogels are potentially viable to be used in controlled-extended release of fertilizers systems. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 2291-2298, 2012
Resumo:
This paper describes the adsorption of sodium dodecyl sulfate (SDS) molecules in a low polar solvent on Ge substrate by using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and atomic force microscopy (AFM). The maximum SDS amount adsorbed is (5.0 +/- 0.3) x 10(14) molecules cm(-2) in CHCl3, while with the use of CCl4 as subphase the ability of SDS adsorbed is 48% lower. AFM images show that depositions are highly disordered over the interface, and it was possible to establish that the size of the SDS deposition is around 30-40 nm over the Ge surface. A complete description of the infrared spectroscopic bands for the head and tail groups in the SDS molecule is also provided.
Resumo:
This article discusses the adsorption kinetics of a L-cysteine monolayer onto a gold surface by means of information obtained through the QCM technique. The results indicate that the adsorption process is rapid and follows the Langmuir isotherm, in which adsorption and desorption are considered. From these measurements the following parameter values were obtained: k d = (4.2 ± 0.4) x 10-3 s-1, k a = 75 ± 6 M-1 s-1, Keq=(1.8 ± 0.3) x 10(4) M-1 and ΔGads = - (5.8 ± 0.2) kcal mol-1.
Resumo:
Brazil is considered one of the largest producers and consumers of tropical fruits. Green coconut (Cocos nucifera L.) stands out not only for its production and consumption, but also for the high amount of waste produced by coconut water industry and in natura consumption. Therefore, there is a need for utilization of this by-product. This study aims to study the adsorption isotherms of green coconut pulp and determine its isosteric heat of sorption. The adsorption isotherms at temperatures of 30, 40, 50, 60, and 70 °C were analyzed, and they exhibit type III behavior, typical of sugar rich foods. The experimental results of equilibrium moisture content were correlated by models present in the literature. The Guggenheim, Anderson and De Boer (GAB) model proved particularly good overall agreement with the experimental data. The heat of sorption determined from the adsorption isotherms increased with the decrease in moisture content. The heat of sorption is considered as indicative of intermolecular attractive forces between the sorption sites and water vapor, which is an important factor to predict the shelf life of dried products.
Resumo:
Oligonucleotides have been extensively used in basic research of gene expression and function, vaccine design, and allergy and cancer therapy. Several oligonucleotide-based formulations have reached the clinical trial phase and one is already on the market. All these applications, however, are dependent on suitable carriers that protect oligonucleotides against degradation and improve their capture by target cells. The cationic lipid diC14-amidine efficiently delivers nucleic acids to mammalian cells. It was recently shown that diC14-amidine bilayers present an interdigitated phase which strongly correlates with a potent fusogenic activity at low temperatures. Interdigitated phases correspond to very ordered gel phases where the two bilayer leaflets are merged; they usually result from perturbations at the interfacial region such as modifications of the polar headgroup area or dehydration of the bilayer. Interdigitation has been described for asymmetric lipids or mixed-chain lipids of different chain lengths and for lipids with large effective headgroup sizes. It has also been described for symmetric lipids under pressure modifications or in the presence of alcohol, glycerol, acetonitrile, polymyxin B, or ions like thiocyanate. Surprisingly, the role of polyelectrolytes on membrane interdigitation has been only poorly investigated. In the present work, we use dynamic light scattering (DLS), differential scanning calorimetry (DSC), and electron spin resonance (ESR) to explore the effect of a small single-stranded oligonucleotide (ODN) polyelectrolyte on the structure and colloid stability of interdigitated diC14-amidine membranes.