906 resultados para Adsorció de zinc
Resumo:
Loss of adipose tissue in cancer cachexia has been associated with tumour production of a lipid-mobilizing factor (LMF) which has been shown to be homologous with the plasma protein zinc-a2-glycoprotein (ZAG). The aim of this study was to compare the ability of human ZAG with LMF to stimulate lipolysis in vitro and induce loss of body fat in vivo, and to determine the mechanisms involved. ZAG was purified from human plasma using a combination of Q Sepharose and Superdex 75 chromatography, and was shown to stimulate glycerol release from isolated murine epididymal adipocytes in a dose-dependent manner. The effect was enhanced by the cyclic AMP phosphodiesterase inhibitor Ro20-1724, and attenuated by freeze/thawing and the specific ß3-adrenoreceptor antagonist SR59230A. In vivo ZAG caused highly significant, time-dependent, decreases in body weight without a reduction in food and water intake. Body composition analysis showed that loss of body weight could be attributed entirely to the loss of body fat. Loss of adipose tissue may have been due to the lipolytic effect of ZAG coupled with an increase in energy expenditure, since there was a dose-dependent increase in expression of uncoupling protein-1 (UCP-1) in brown adipose tissue. These results suggest that ZAG may be effective in the treatment of obesity.
Resumo:
The plasma protein zinc-α2-glycoprotein (ZAG) has been shown to be identical with a lipid mobilizing factor capable of inducing loss of adipose tissue in cancer cachexia through an increased lipid mobilization and utilization. The ability of ZAG to induce uncoupling protein (UCP) expression has been determined using in vitro models of adipose tissue and skeletal muscle. ZAG induced a concentration-dependent increase in the expression of UCP-1 in primary cultures of brown, but not white, adipose tissue, and this effect was attenuated by the β3-adrenergic receptor (β3-AR) antagonist SR59230A. A 6.5-fold increase in UCP-1 expression was found in brown adipose tissue after incubation with 0.58 μM ZAG. ZAG also increased UCP-2 expression 3.5-fold in C2C12 murine myotubes, and this effect was also attenuated by SR59230A and potentiated by isobutylmethylxanthine, suggesting a cyclic AMP-mediated process through interaction with a β3-AR. ZAG also produced a dose-dependent increase in UCP-3 in murine myotubes with a 2.5-fold increase at 0.58 μM ZAG. This effect was not mediated through the β3-AR, but instead appeared to require mitogen activated protein kinase. These results confirm the ability of ZAG to directly influence UCP expression, which may play an important role in lipid utilization during cancer cachexia. © 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Zinc-α2-glycoprotein (ZAG), a 43-kDa protein, is overexpressed in certain human malignant tumors and acts as a lipid-mobilizing factor to stimulate lipolysis in adipocytes leading to cachexia in mice implanted with ZAG-producing tumors. Because white adipose tissue (WAT) is an endocrine organ secreting a wide range of protein factors, including those involved in lipid metabolism, we have investigated whether ZAG is produced locally by adipocytes. ZAG mRNA was detected by RT-PCR in the mouse WAT depots examined (epididymal, perirenal, s.c., and mammary gland) and in interscapular brown fat. In WAT, ZAG gene expression was evident in mature adipocytes and in stromal-vascular cells. Using a ZAG Ab, ZAG protein was located in WAT by Western blotting and immunohistochemistry. Mice bearing the MAC16-tumor displayed substantial losses of body weight and fat mass, which was accompanied by major increases in ZAG mRNA and protein levels in WAT and brown fat. ZAG mRNA was detected in 3T3-L1 cells, before and after the induction of differentiation, with the level increasing progressively after differentiation with a peak at days 8-10. Both dexamethasone and a β 3 agonist, BRL 37344, increased ZAG mRNA levels in 3T3-L1 adipocytes. ZAG gene expression and protein were also detected in human adipose tissue (visceral and s.c.). It is suggested that ZAG is a new adipose tissue protein factor, which may be involved in the modulation of lipolysis in adipocytes. Overexpression in WAT of tumor-bearing mice suggests a local role for adipocyte-derived ZAG in the substantial reduction of adiposity of cancer cachexia.
Resumo:
Incorporation of catechols into polymers has long been of interest due to their ability to chelate heavy metals and their use in the design of adhesives, metal-polymer nanocomposites, antifouling coatings, and so on. This paper reports, for the first time, the reversible addition-fragmentation chain transfer (RAFT) polymerization of a protected catechol-inspired monomer, 3,4-dimethoxystyrene (DMS), using commercially available trithiocarbonate, 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT), as a chain transfer agent. Our identified RAFT system produces well-defined polymers across a range of molecular weights (5-50 kg/mol) with low molar mass dispersities (Mw/Mn < 1.3). Subsequent facile demethylation of poly(3,4-dimethoxystyrene) (PDMS) yields poly(3,4-dihydroxystyrene) (PDHS), a catechol-bearing polymer, in quantitative yields. Semiquantitative zinc binding capacity analysis of both polymers using SEM/EDXA has demonstrated that both PDMS and PDHS have considerable surface binding (65% and 87%, respectively), although the films deposited from PDMS are of a better quality and processability due to solubility and lower processing temperatures. © 2014 American Chemical Society.
Resumo:
A study was made of notch effects on the cleavage fracture of polycrystalline zinc. It was seen that the nominal fracture stress of SENB specimens was independent of notch angle. The maximum tensile stress below the notch at fracture in SENB specimens was shown to be different from the tensile stress at fracture in tensile testpieces over a temperature range from −196 to −17°C. The notch root strain at fracture was found to be the same as the uniaxial tensile fracture strain over this temperature interval. These results were interpreted as showing the cleavage fracture of polycrystalline zinc to be shear-stress or initiation controlled, as predicted by Stroh's dislocation model of cleavage.
Resumo:
An investigation into the mechanism by which ethylene thiourea (ETU) cross-links polychloroprene (CR) in combination with zinc oxide (ZnO) was undertaken. This was achieved through an examination of the mechanisms of crosslinking CR with ETU and ZnO separately and in unison. Spectroscopic and physical characterization techniques were employed to probe the cross-linking mechanisms of CRusing other standard rubber accelerators and model compounds with analogous structures and functionalities to ETU. These investigations have resulted in the proposal of a new mechanism by which ETU and ZnO can synergistically cross-link CR, in addition to providing new evidence to support concomitant mechanisms already published for cross-linking CR.
Resumo:
This paper presents the results of our data mining study of Pb-Zn (lead-zinc) ore assay records from a mine enterprise in Bulgaria. We examined the dataset, cleaned outliers, visualized the data, and created dataset statistics. A Pb-Zn cluster data mining model was created for segmentation and prediction of Pb-Zn ore assay data. The Pb-Zn cluster data model consists of five clusters and DMX queries. We analyzed the Pb-Zn cluster content, size, structure, and characteristics. The set of the DMX queries allows for browsing and managing the clusters, as well as predicting ore assay records. A testing and validation of the Pb-Zn cluster data mining model was developed in order to show its reasonable accuracy before beingused in a production environment. The Pb-Zn cluster data mining model can be used for changes of the mine grinding and floatation processing parameters in almost real-time, which is important for the efficiency of the Pb-Zn ore beneficiation process. ACM Computing Classification System (1998): H.2.8, H.3.3.
Resumo:
Zinc oxide and graphene nanostructures are important technological materials because of their unique properties and potential applications in future generation of electronic and sensing devices. This dissertation investigates a brief account of the strategies to grow zinc oxide nanostructures (thin film and nanowire) and graphene, and their applications as enhanced field effect transistors, chemical sensors and transparent flexible electrodes. Nanostructured zinc oxide (ZnO) and low-gallium doped zinc oxide (GZO) thin films were synthesized by a magnetron sputtering process. Zinc oxide nanowires (ZNWs) were grown by a chemical vapor deposition method. Field effect transistors (FETs) of ZnO and GZO thin films and ZNWs were fabricated by standard photo and electron beam lithography processes. Electrical characteristics of these devices were investigated by nondestructive surface cleaning, ultraviolet irradiation treatment at high temperature and under vacuum. GZO thin film transistors showed a mobility of ∼5.7 cm2/V·s at low operation voltage of <5 V and a low turn-on voltage of ∼0.5 V with a sub threshold swing of ∼85 mV/decade. Bottom gated FET fabricated from ZNWs exhibit a very high on-to-off ratio (∼106) and mobility (∼28 cm2/V·s). A bottom gated FET showed large hysteresis of ∼5.0 to 8.0 V which was significantly reduced to ∼1.0 V by the surface treatment process. The results demonstrate charge transport in ZnO nanostructures strongly depends on its surface environmental conditions and can be explained by formation of depletion layer at the surface by various surface states. A nitric oxide (NO) gas sensor using single ZNW, functionalized with Cr nanoparticles was developed. The sensor exhibited average sensitivity of ∼46% and a minimum detection limit of ∼1.5 ppm for NO gas. The sensor also is selective towards NO gas as demonstrated by a cross sensitivity test with N2, CO and CO2 gases. Graphene film on copper foil was synthesized by chemical vapor deposition method. A hot press lamination process was developed for transferring graphene film to flexible polymer substrate. The graphene/polymer film exhibited a high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ∼88.80% light transmittance and ∼1.1742Ω/sq k sheet resistance. The application of a graphene/polymer film as a flexible and transparent electrode for field emission displays was demonstrated.
Resumo:
The speciation of dissolved zinc (Zn) was investigated by voltammetry in the Atlantic sector of the Southern Ocean along two transects across the major frontal systems: along the Zero Meridian and across the Drake Passage. In the Southern Ocean south of the APF we found detectable labile inorganic Zn throughout the surface waters in contrast to studies from lower latitudes. Using a combination of ASV titrations and pseudopolarography revealed the presence of significant concentration of electrochemically inert Zn ligands throughout the Southern Ocean. These ligands however were nearly always saturated due to the presence of excess concentrations of dissolved Zn that were associated with the high nutrient waters south of the Antarctic Polar Front (APF). Only in surface waters did the concentration of Zn complexing ligands exceed the dissolved Zn concentrations suggesting a biological source for these ligands. Our findings have clear implications for the biogeochemical cycling of Zn and for the interpretation of paleo records utilizing Zn in opal as a tracer of Zn speciation in the water column.
Resumo:
The distribution of dissolved zinc (Zn) was investigated in the Atlantic sector of the Southern Ocean in the austral autumn of 2008 as part of the IPY GEOTRACES expedition ZERO & DRAKE. Research focused on transects across the major frontal systems along the Zero Meridian and across the Drake Passage. There was a strong gradient in surface zinc concentrations observed across the Antarctic Polar Front along both transects and high zinc levels were found in surface waters throughout the Southern Ocean. Vertical profiles for dissolved Zinc showed the presence of local minima and maxima in the upper 200 m consistent with significant uptake by phytoplankton and release by zooplankton grazing, respectively. Highest deep water zinc concentrations were found in the centre of the Weddell Gyre associated with Central Intermediate Water (CIW), a water mass which is depleted in O2, elevated in CO2 and is regionally a CFC minimum. Our data suggests that the remineralization of sinking particles is a key control on the distribution of Zn in the Southern Ocean. Disappearance ratios of zinc to phosphate (Zn:P) in the upper water column increased southwards along both transects and based on laboratory studies they suggest slower growth rates of phytoplankton due to iron or light limitation. Zinc and silicate were strongly correlated throughout the study region but the disappearance ratio (Zn:Si) was relatively uniform overall except for the region close to the ice edge on the Zero Meridian.
Resumo:
El uso de fuentes de Zn (orgánicas e inorgánicas) en el pienso de cerdos prepúberes se ha mostrado indispensable, ya que este mineral ha evidenciado beneficios relacionados con aspectos reproductivos, respuesta inmunitaria, estado de salud, ganancia de peso, consumo de pienso. Los primeros estudios que identificaron al Zn como componente fundamental en la reproducción fueron en la década de los 40´s, en donde se estableció la importancia de este mineral en el desarrollo de las células de Leydig, a partir de estos descubrimientos se recomienda la utilización del mineral en el pienso de los cerdos. Sin embargo, las recomendaciones que se han hecho para apoyar el efecto del Zn en la reproducción, fueron identificadas hace 30 años, y poco se ha estudiado desde entonces con respecto al nivel de Zn que habría que incluir en el pienso. Por otra parte, la industria alimenticia animal ha desarrollado fuentes minerales con mayor biodisponibilidad, por un lado para que el organismo pueda utilizarlo más rápida y eficientemente (>biodisponibilidad) y por otra parte para evitar que el mineral consumido por el animal, se pierda a través de las deyecciones, asegurando con ello no solo la reducción de las pérdidas económicas, sino la minimización del impacto ambiental que el Zn ejerce negativamente. De esta manera, se decidió realizar una investigación que proporcionara información sobre el efecto de las fuentes y niveles de Zn, en la eficiencia de crecimiento y desarrollo de cerdos prepúberes y verracos jóvenes, en el desarrollo de los testículos y sus estructuras celulares, así como en el comportamiento sexual de los verracos jóvenes. Para lo anterior se utilizaron 50 cerdos de la línea genética York x Landrace, con un peso medio inicial de 35±1.25, estos animales se distribuyeron en siete tratamientos, los cuales correspondieron a dietas formuladas con y sin la adición de fuente de Zn (ZnSO4, ZnO, ZnMet) , y a dos niveles (150ppm y 200ppm de Zn). La dieta base fue formulada utilizando la tabla de necesidades nutritivas del FEDNA (2006). Todos los cerdos fueron colocados en jaulas individuales, con comedero y bebedero individual. Se les dio un periodo de adaptación de 15 días, posteriormente se inició la fase experimental en la que se midió el consumo de pienso (CDP), conversión alimenticia (CA), ganancia de peso (GDP), al finalizar el periodo de crianza (Crecimiento, Desarrollo y Finalización) y los cerdos llegaron a un peso mayor a 100Kg, se sacrificaron tres cerdos, de los cuales se obtuvieron los testículos, epidídimos, bazo, páncreas, hueso (fémur), hígado y riñones, para analizar a través de Espectrofotometría de Absorción Atómica la concentración de Zn...
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Zinc-air fuel cells (ZAFCs) present a promising energy source with a competing potential with the lithium-ion battery and even with proton-exchange membrane fuel cells (PEMFCs) for applications in next generation electrified transport and energy storage. The regeneration of zinc is essential for developing the next-generation, i.e., electrochemically rechargeable ZAFCs. This review aims to provide a comprehensive view on both theoretical and industrial platforms already built hitherto, with focus on electrode materials, electrode and electrolyte additives, solution chemistry, zinc deposition reaction mechanisms and kinetics, and electrochemical zinc regeneration systems. The related technological challenges and their possible solutions are described and discussed. A summary of important R&D patents published within the recent 10 years is also presented.