951 resultados para Acute Kidney Injury
Resumo:
Higher initial levels of pain and disability, older age, cold hyperalgesia, impaired sympathetic vasoconstriction and moderate post-traumatic stress symptoms have been shown to be associated with poor outcome 6 months following whiplash injury. This study prospectively investigated the predictive capacity of these variables at a long-term follow-up. Sixty-five of an initial cohort of 76 acutely injured whiplash participants were followed to 2-3 years post-accident. Motor function (ROM; kinaesthetic sense; activity of the superficial neck flexors (EMG) during cranio-cervical flexion), quantitative sensory testing (pressure, thermal pain thresholds and brachial plexus provocation test), sympathetic vasoconstrictor responses and psychological distress (GHQ-28, TSK and IES) were measured. The outcome measure was Neck Disability Index (NDI) scores. Participants with ongoing moderate/severe symptoms at 2-3 years continued to manifest decreased ROM, increased EMG during cranio-cervical flexion, sensory hypersensitivity and elevated levels of psychological distress when compared to recovered participants and those with milder symptoms. The latter two groups showed only persistent deficits in cervical muscle recruitment patterns. Higher initial NDI scores (OR 1.00-1.1), older age (OR 1.00-1.13), cold hyperalgesia (OR 1.1-1.13) and post-traumatic stress symptoms (OR 1.03-1.2) remained significant predictors of poor outcome at long-term follow-up (r(2) = 0.56). The robustness of these physical and psychological factors suggests that their assessment in the acute stage following whiplash injury will be important. (c) 2006 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
Objective: Previous studies investigating associations between serum lipids and renal disease have generally not taken into account dietary intake or physical activity - both known to influence circulating lipids. Furthermore, inclusion of patients on HMG-CoA reductase inhibitors may also have influenced findings due to the pleiotropic effect of this medication. Therefore, the aim of this study is to determine the relationships between serum lipids and renal function in a group of patients not taking lipid-lowering medication and taking into account dietary intake and physical activity. Methods: Data from 100 patients enrolled in the Lipid Lowering and Onset of Renal Disease (LORD) trial were used in this study. Patients were included with serum creatinine > 120 mu mol/l, and excluded if they were taking lipid-lowering medication. Unadjusted and adjusted relationships were determined between fasting serum lipid concentrations (total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol/HDL ratio) and measures of renal function (estimated glomerular filtration rate (eGFR), creatinine clearance and serum creatinine) and urinary protein excretion. Results: Significant (p < 0.05) negative unadjusted relationships were found between lipids (total cholesterol, LDL and HDL cholesterol) and serum creatinine. In support of these findings, logarithmically-transformed lipids (total cholesterol, LDL and HDL cholesterol) were significantly associated with eGFR and creatinine clearance although the effects were of a smaller magnitude. Adjustment for dietary saturated fat intake and physical activity did not substantially change these effects. Conclusion: These data do not support the premise that lipids are associated with renal dysfunction in patients with normocholesterolemia.
Resumo:
Erythropoietin (EPO) has been used widely for the treatment of anaemia associated with chronic kidney disease and cancer chemotherapy for nearly 20 years. More recently, EPO has been found to interact with its receptor (EPO-R) expressed in a large variety of non-haematopoietic tissues to induce a range of cytoprotective cellular responses, including mitogenesis, angiogenesis, inhibition of apoptosis and promotion of vascular repair through mobilization of endothelial progenitor cells from the bone marrow. Administration of EPO or its analogue, darbepoetin, promotes impressive renoprotection in experimental ischaemic and toxic acute renal failure, as evidenced by suppressed tubular epithelial apoptosis, enhanced tubular epithelial proliferation and hastened functional recovery. This effect is still apparent when administration is delayed up to 6 h after the onset of injury and can be dissociated from its haematological effects. Based on these highly encouraging results, at least one large randomized controlled trial of EPO therapy in ischaemic acute renal failure is currently underway. Preliminary experimental and clinical evidence also indicates that EPO may be renoprotective in chronic kidney disease. The purpose of the present article is to review the renoprotective benefits of different protocols of EPO therapy in the settings of acute and chronic kidney failure and the potential mechanisms underpinning these renoprotective actions. Gaining further insight into the pleiotropic actions of EPO will hopefully eventuate in much-needed, novel therapeutic strategies for patients with kidney disease.
Resumo:
Regenerative medicine is being heralded in a similar way as gene therapy was some 15 yr ago. it is an area of intense excitement and potential, as well as myth and disinformation. However, with the increasing rate of end-stage renal failure and limited alternatives for its treatment, we must begin to investigate seriously potential regenerative approaches for the kidney. This review defines which regenerative options there might be for renal disease, summarizes the progress that has been made to date, and investigates some of the unique obstacles to such treatments that the kidney presents. The options discussed include in situ organ repair via bone marrow recruitment or dedifferentiation; ex vivo stem cell therapies, including both autologous and nonautologous options; and bioengineering approaches for the creation of a replacement organ.
Resumo:
Study Design. Experimental study of muscle changes after lumbar spinal injury. Objectives. To investigate effects of intervertebral disc and nerve root lesions on cross-sectional area, histology and chemistry of porcine lumbar multifidus. Summary of Background Data. The multifidus cross-sectional area is reduced in acute and chronic low back pain. Although chronic changes are widespread, acute changes at 1 segment are identified within days of injury. It is uncertain whether changes precede or follow injury, or what is the mechanism. Methods. The multifidus cross-sectional area was measured in 21 pigs from L1 to S1 with ultrasound before and 3 or 6 days after lesions: incision into L3 - L4 disc, medial branch transection of the L3 dorsal ramus, and a sham procedure. Samples from L3 to L5 were studied histologically and chemically. Results. The multifidus cross-sectional area was reduced at L4 ipsilateral to disc lesion but at L4 - L6 after nerve lesion. There was no change after sham or on the opposite side. Water and lactate were reduced bilaterally after disc lesion and ipsilateral to nerve lesion. Histology revealed enlargement of adipocytes and clustering of myofibers at multiple levels after disc and nerve lesions. Conclusions. These data resolve the controversy that the multifidus cross-sectional area reduces rapidly after lumbar injury. Changes after disc lesion affect 1 level with a different distribution to denervation. Such changes may be due to disuse following reflex inhibitory mechanisms.
Resumo:
The Rapid Screen of Concussion (RSC) is a brief psychometric test battery, designed to provide a functional criterion to aid clinical diagnosis of mild traumatic brain injury (mTBI). The present research aimed to examine the utility of this instrument for assessing recovery after mTBI. Three studies were conducted. In Study 1, Discriminant Function Analysis was performed to determine how well the RSC differentiated uninjured controls (N¼16), from mTBI patients (N¼22) and moderate to severe TBI patients (N¼14), several months post-injury. As predicted, moderate to severe TBI patients achieved lower scores than the mTBI and control groups. The RSC also successfully differentiated between each of the diagnostic groups, yielding an overall correct classification rate of 75%. Study 2 examined the predictive utility of the RSC in the mTBI sample (N¼22). Acute injury performance on the RSC was correlated with post-injury scores at an average of 5.5 months post-injury. Statistically significant partial correlation coefficients (r¼0.53r¼0.80) were found for each of the subtests, showing that low acute RSC scores were predictive of poor recovery scores on the RSC after mTBI. In the third study, Reliable Change Indices were calculated on the RSC subtests to examine individual patterns of recovery from mTBI. While 17 of the 23 participants made a significant improvement on their acute injury DSST scores (74%), only 13 of 25 made a significant improvement on the Rapid Sentence Judgement Test (52%), highlighting differential recovery of function, and challenging the notion of full recovery from mTBI within 3 months. These overall results offer support for the construct and predictive validity of the RSC and demonstrate that inexpensive tests of brain function may be useful for managing mTBI acutely for prognosis.
Resumo:
Background Cardiac disease is the principal cause of death in patients with chronic kidney disease (CKD). Ischemia at dobutamine stress echocardiography (DSE) is associated with adverse events in these patients. We sought the efficacy of combining clinical risk evaluation with DSE. Methods We allocated 244 patients with CKD (mean age 54 years, 140 men, 169 dialysis-dependent at baseline) into low- and high-risk groups based on two disease-specific scores and the Framingham risk model. All underwent DSE and were further stratified according to DSE results. Patients were followed over 20 +/- 14 months for events (death, myocardial infarction, acute coronary syndrome). Results There were 49 deaths and 32 cardiac events. Using the different clinical scores, allocation of high risk varied from 34% to 79% of patients, and 39% to 50% of high-risk patients had an abnormal DSE. In the high-risk groups, depending on the clinical score chosen, 25% to 44% with an abnormal DSE had a cardiac event, compared with 8% to 22% with a.normal DSE. Cardiac events occurred in 2.0%, 3.1 %, and 9.7% of the low-risk patients, using the two disease-specific and Framingham scores, respectively, and DSE results did not add to risk evaluation in this subgroup. Independent DSE predictors of cardiac events were a lower resting diastolic blood pressure, angina during the test, and the combination of ischemia with resting left ventricular dysfunction. Conclusion In CKD patients, high-risk findings by DSE can predict outcome. A stepwise strategy of combining clinical risk scores with DSE for CAD screening in CKD reduces the number of tests required and identifies a high-risk subgroup among whom DSE results more effectively stratify high and low risk.
Resumo:
Paracetamol is regarded as a relatively safe drug in the gastro-duodenal region of humans but recent epidemiological investigations have suggested that at high doses there may be an increased risk of ulcers and bleeding. To investigate the possibility that inflammatory conditions and gastric acidity may play a role in potentiating development of gastric mucosal injury from paracetamol in rats (as noted previously with various non-steroidal anti-inflammatory drugs) we studied the gastric irritant effects of paracetamol and some phenolic and non-phenolic analgesics and antipyretics in rats with adjuvant or collagen II induced arthritis or zymosan-induced paw inflammation and given 1.0 ml hydrochloric acid (HCl) 0.1 M and/or an i. p. injection of the cholinomimetic, acetyl-β-methyl choline chloride 5.0 mg/kg. Gastric lesions were determined 2 h after oral administration of 100 or 250 mg/kg paracetamol or at therapeutically effective doses of the phenolic or non-phenolic analgesics/antipyretics. The results showed that gastric mucosal injury occurred with all these agents when given to animals that received all treatments so indicating there is an adverse synergy of these three factors, namely: (i) intrinsic disease; (ii) hyperacidity; and (iii) vagal stimulation for rapidly promoting gastric damage, both in the fundic as well as the antral mucosa, for producing gastric damage by paracetamol, as well as the other agents. Removing one of these three predisposing factors effectively blunts/abolishes expression of this paracetamol-induced gastrotoxity in rats. These three factors, without paracetamol, did not cause significant acute gastropathy.
Resumo:
For over five years, post-acute burns care for children in regional areas of Queensland has been provided by videoconference. Some 300 specialist burns consultations are conducted by videoconference annually. To support regional health professionals, particularly occupational therapists who play an integral role in the local management of these children, we have instigated a series of monthly education sessions via videoconference. The sessions have addressed a broad range of topics related to the long-term management of children following a burn injury. During the first six months, up to 22 regional sites participated in multipoint videoconferences. The average number of participants per videoconference was 39 and the average duration of each session was 67 min. Participant satisfaction was measured with a routine survey completed by each site at the conclusion of the videoconference. The survey response rate was 88% (n = 95) and overall feedback was extremely positive. 96% of respondents agreed that the programme provided them with new information and that the content was relevant (95%) and of appropriate depth (84%). The educational programme has provided valuable support to a group of professionals who are taking on greater responsibility for the clinical management of children requiring post-acute burns care.
Resumo:
Background Recent in vivo and in vitro studies in non-neuronal and neuronal tissues have shown that different pathways of macrophage activation result in cells with different properties. Interleukin (IL)-6 triggers the classically activated inflammatory macrophages (M1 phenotype), whereas the alternatively activated macrophages (M2 phenotype) are anti-inflammatory. The objective of this study was to clarify the effects of a temporal blockade of IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice. Methods MR16-1 antibodies versus isotype control antibodies or saline alone were administered immediately after thoracic SCI in mice. SC tissue repair was compared between the two groups by Luxol fast blue (LFB) staining for myelination and immunoreactivity for the neuronal markers growth-associated protein (GAP)-43 and neurofilament heavy 200 kDa (NF-H) and for locomotor function. The expression of T helper (Th)1 cytokines (interferon (IFN)-? and tumor necrosis factor-a) and Th2 cytokines (IL-4, IL-13) was determined by immunoblot analysis. The presence of M1 (inducible nitric oxide synthase (iNOS)-positive, CD16/32-positive) and M2 (arginase 1-positive, CD206-positive) macrophages was determined by immunohistology. Using flow cytometry, we also quantified IFN-? and IL-4 levels in neutrophils, microglia, and macrophages, and Mac-2 (macrophage antigen-2) and Mac-3 in M2 macrophages and microglia. Results LFB-positive spared myelin was increased in the MR16-1-treated group compared with the controls, and this increase correlated with enhanced positivity for GAP-43 or NF-H, and improved locomotor Basso Mouse Scale scores. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of Th2 cytokines. Whereas iNOS-positive, CD16/32-positive M1 macrophages were the predominant phenotype in the injured SC of non-treated control mice, MR16-1 treatment promoted arginase 1-positive, CD206-positive M2 macrophages, with preferential localization of these cells at the injury site. MR16-1 treatment suppressed the number of IFN-?-positive neutrophils, and increased the number of microglia present and their positivity for IL-4. Among the arginase 1-positive M2 macrophages, MR16-1 treatment increased positivity for Mac-2 and Mac-3, suggestive of increased phagocytic behavior. Conclusion The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2 macrophages.
Resumo:
Abstract Mesenchymal stem cells (MSC) derived from bone marrow can potentially reduce the acute inflammatory response in spinal cord injury (SCI) and thus promote functional recovery. However, the precise mechanisms through which transplanted MSC attenuate inflammation after SCI are still unclear. The present study was designed to investigate the effects of MSC transplantation with a special focus on their effect on macrophage activation after SCI. Rats were subjected to T9-T10 SCI by contusion, then treated 3 days later with transplantation of 1.0×10(6) PKH26-labeled MSC into the contusion epicenter. The transplanted MSC migrated within the injured spinal cord without differentiating into glial or neuronal elements. MSC transplantation was associated with marked changes in the SCI environment, with significant increases in IL-4 and IL-13 levels, and reductions in TNF-a and IL-6 levels. This was associated simultaneously with increased numbers of alternatively activated macrophages (M2 phenotype: arginase-1- or CD206-positive), and decreased numbers of classically activated macrophages (M1 phenotype: iNOS- or CD16/32-positive). These changes were associated with functional locomotion recovery in the MSC-transplanted group, which correlated with preserved axons, less scar tissue formation, and increased myelin sparing. Our results suggested that acute transplantation of MSC after SCI modified the inflammatory environment by shifting the macrophage phenotype from M1 to M2, and that this may reduce the effects of the inhibitory scar tissue in the subacute/chronic phase after injury to provide a permissive environment for axonal extension and functional recovery.
Resumo:
The objective of this study was to clarify the effects of a temporal blockade of IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice. MR16-1 antibodies versus isotype control antibodies or saline alone was administered immediately after thoracic SCI in mice. MR16-1-treated group samples showed increased neuronal regeneration and locomotor recovery compared with controls. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of Th2 cytokines. MR16-1 treatment promoted arginase-1-positive, CD206-positive M2 macrophages, with preferential localization of these cells at the injury site and enhanced positivity for Mac-2 and Mac-3, suggestive of increased phagocytic behavior. The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2 macrophages.
Resumo:
Acknowledgements This study was supported by a Medical Research Council UK grant (grant number G0800901), as a sub-study of Nitrites in Acute Myocardial Infarction. Thanks are due to Roger Staff, for invaluable advice regarding receiver operator characteristic analysis.