946 resultados para Acidobacteria, relative 16S rRNA clone frequency
Resumo:
It has often been supposed that patterns of rhythmic bimanual coordination in which homologous muscles are engaged simultaneously, are performed in a more stable manner than those in which the same muscles are activated in an alternating fashion. In order to assess the efficacy of this constraint, the present study investigated the effect of forearm posture (prone or supine) on bimanual abduction-adduction movements of the wrist in isodirectional and non-isodirectional modes of coordination. Irrespective of forearm posture, non-isodirectional coordination was observed to be more stable than isodirectional coordination. In the latter condition, there was a more severe deterioration of coordination accuracy/stability as a function of cycling frequency than in the former condition. With elevations in cycling frequency, the performers recruited extra mechanical degrees of freedom, principally via flexion-extension of the wrist, which gave rise to increasing motion in the vertical plane. The increases in movement amplitude in the vertical plane were accompanied by decreasing amplitude in the horizontal plane. In agreement with previous studies, the present findings confirm that the relative timing of homologous muscle activation acts as a principal constraint upon the stability of interlimb coordination. Furthermore, it is argued that the use of manipulations of limb posture to investigate the role of other classes of constraint (e.g. perceptual) should be approached with caution because such manipulations affect the mapping between muscle activation patterns, movement dynamics and kinematics.
Resumo:
An emerging public health phenomenon is the increasing incidence of methicillin-resistant Staphylococcus aureus (MRSA) infections that are acquired outside of health care facilities. One lineage of community-acquired MRSA (CA-MRSA) is known as the Western Samoan phage pattern (WSPP) clone. The central aim of this study was to develop an efficient genotyping procedure for the identification of WSPP isolates. The approach taken was to make use of the highly variable region downstream of mecA in combination with a single nucleotide polymorphism (SNP) defined by the S. aureus multilocus sequence typing (MLST) database. The premise was that a combinatorial genotyping method that interrogated both a highly variable region and the genomic backbone would deliver a high degree of informative power relative to the number of genetic polymorphisms-interrogated. Thirty-five MRSA isolates were used for this study, and their gene contents and order downstream of mecA were determined. The CA-MRSA isolates were found to contain a truncated mecA downstream region consisting of mecA-HVR-IS431 mec-dcs-Ins117, and a PCR-based method for identifying this structure was developed. The hospital-acquired isolates were found to contain eight different mecA downstream regions, three of which were novel. The Minimum SNPs computer software program was used to mine the S. aureus MLST database, and the arcC 2726 polymorph was identified as 82% discriminatory for ST-30. A real-time PCR assay was developed to interrogate this SNP. We found that the assay for the truncated mecA downstream region in combination with the interrogation of arcC position 272 provided an unambiguous identification of WSPP isolates.
Resumo:
A protein-truncating variant of CHEK2, 1100delC, is associated with a moderate increase in breast cancer risk. We have determined the prevalence of this allele in index cases from 300 Australian multiple-case breast cancer families, 95% of which had been found to be negative for mutations in BRCA1 and BRCA2. Only two (0.6%) index cases heterozygous for the CHEK2 mutation were identified. All available relatives in these two families were genotyped, but there was no evidence of co-segregation between the CHEK2 variant and breast cancer. Lymphoblastoid cell lines established from a heterozygous carrier contained approximately 20% of the CHEK2 1100delC mRNA relative to wild-type CHEK2 transcript. However, no truncated CHK2 protein was detectable. Analyses of expression and phosphorylation of wild-type CHK2 suggest that the variant is likely to act by haploinsufficiency. Analysis of CDC25A degradation, a downstream target of CHK2, suggests that some compensation occurs to allow normal degradation of CDC25A. Such compensation of the 1100delC defect in CHEK2 might explain the rather low breast cancer risk associated with the CHEK2 variant, compared to that associated with truncating mutations in BRCA1 or BRCA2.
Resumo:
Nosocomial transmission of methicillin-resistant Staphylococcus aureus (MRSA) to patients with cystic fibrosis (CF) frequently results in chronic respiratory tract carriage. This is an increasing problem, adds to the burden of glycopeptide antibiotic use in hospitals, and represents a relative contraindication to lung transplantation. The aim of this study was to determine whether it is possible to eradicate MRSA with prolonged oral combination antibiotics, and whether this treatment is associated with improved clinical status. Adult CF patients (six mate, one female) with chronic MRSA infection were treated for six months with rifampicin and sodium fusidate. Outcome data were examined for six months before treatment, on treatment and after treatment. The patients had a mean age of 29.3 (standard deviation = 6.3) years and FEV1 of 36.1% (standard deviation = 12.7) predicted. The mean duration of MRSA isolation was 31 months. MRSA isolates identified in these patients was of the same lineage as the known endemic strain at the hospital when assessed by pulsed-field get electrophoresis. Five of the seven had no evidence of MRSA during and for at [east six months after rifampicin and sodium fusidate. The proportion of sputum samples positive for MRSA was lower during the six months of treatment (0.13) and after treatment (0.19) compared with before treatment (0.85) (P < 0.0001). There was a reduction in the number of days of intravenous antibiotics per six months with 20.3 +/- 17.6 on treatment compared with 50.7 before treatment and 33.0 after treatment (P = 0.02). There was no change in lung function. Gastrointestinal side effects occurred in three, but led to therapy cessation in only one patient. Despite the use of antibiotics with anti-staphylococcal activity for treatment of respiratory exacerbation, MRSA infection persists. MRSA can be eradicated from the sputum of patients with CF and chronic MRSA carriage by using rifampicin and sodium fusidate for six months. This finding was associated with a significant reduction in the duration of intravenous antibiotic treatment during therapy. (C) 2003 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective: To assess validity of the Nambour food-frequency questionnaire (FFQ) relative to weighed food records (WFRs), and the extent to which selected demographic, anthropometric and social characteristics explain differences between the two dietary methods. Design: Inter-method validity study; 129-item FFQ vs. 12 days of WFR over 12 months. Setting: Community-based Nambour Skin Cancer Prevention Trial. Subjects: One hundred and fifteen of 168 randomly selected participants in the trial (68% acceptance rate) aged 25-75 years. Results: Spearman correlations between intakes from the two methods ranged from 0.18 to 0.71 for energy-adjusted values. Differences between FFQ and WFR regressed on personal characteristics were significantly associated with at least one characteristic for 16 of the 21 nutrients. Sex was significantly associated with differences for nine nutrients; body mass index (BMI), presence of any medical condition and age were each significantly associated with differences for three to six nutrients; use of dietary supplements and occupation were associated with differences for one nutrient each. There was no consistency in the direction of the significant associations. Regression models explained from 7% (riboflavin) to 27% (saturated fat) of variation in differences in intakes. Conclusions: The relative validity of FFQ estimates for many nutrients is quite different for males than for females. Age, BMI, medical condition and level of intake were also associated with relative validity for some nutrients, resulting in the need to adjust intakes estimates for these in modelling diet-disease relationships. Estimates for cholesterol, beta-carotene equivalents, retinol equivalents, thiamine, riboflavin and calcium would not benefit from this.
Resumo:
A numerical method is introduced to determine the nuclear magnetic resonance frequency of a donor (P-31) doped inside a silicon substrate under the influence of an applied electric field. This phosphorus donor has been suggested for operation as a qubit for the realization of a solid-state scalable quantum computer. The operation of the qubit is achieved by a combination of the rotation of the phosphorus nuclear spin through a globally applied magnetic field and the selection of the phosphorus nucleus through a locally applied electric field. To realize the selection function, it is required to know the relationship between the applied electric field and the change of the nuclear magnetic resonance frequency of phosphorus. In this study, based on the wave functions obtained by the effective-mass theory, we introduce an empirical correction factor to the wave functions at the donor nucleus. Using the corrected wave functions, we formulate a first-order perturbation theory for the perturbed system under the influence of an electric field. In order to calculate the potential distributions inside the silicon and the silicon dioxide layers due to the applied electric field, we use the multilayered Green's functions and solve an integral equation by the moment method. This enables us to consider more realistic, arbitrary shape, and three-dimensional qubit structures. With the calculation of the potential distributions, we have investigated the effects of the thicknesses of silicon and silicon dioxide layers, the relative position of the donor, and the applied electric field on the nuclear magnetic resonance frequency of the donor.
Resumo:
Functional electrical impedance tomography (EIT) measures relative impedance change that occurs in the chest during a distinct observation period and an EIT image describing regional relative impedance change is generated. Analysis of such an EIT image may be erroneous because it is based on an impedance signal that has several components. Most of the change in relative impedance in the chest is caused by air movement but other physiological events such as cardiac activity change in end expiratory level or pressure swings originating from a ventilator circuit can influence the impedance signal. We obtained EIT images and signals in spontaneously breathing healthy adults, in extremely prematurely born infants on continuous positive airway pressure and in ventilated sheep on conventional mechanical or high frequency oscillatory ventilation (HFOV). Data were analyzed in the frequency domain and results presented after band pass filtering within the frequency range of the physiological event of interest. Band pass filtering of EIT data is necessary in premature infants and on HFOV to differentiate and eliminate relative impedance changes caused by physiological events other than the one of interest.
Resumo:
How speech is separated perceptually from other speech remains poorly understood. Recent research suggests that the ability of an extraneous formant to impair intelligibility depends on the modulation of its frequency, but not its amplitude, contour. This study further examined the effect of formant-frequency variation on intelligibility by manipulating the rate of formant-frequency change. Target sentences were synthetic three-formant (F1?+?F2?+?F3) analogues of natural utterances. Perceptual organization was probed by presenting stimuli dichotically (F1?+?F2C?+?F3C; F2?+?F3), where F2C?+?F3C constitute a competitor for F2 and F3 that listeners must reject to optimize recognition. Competitors were derived using formant-frequency contours extracted from extended passages spoken by the same talker and processed to alter the rate of formant-frequency variation, such that rate scale factors relative to the target sentences were 0, 0.25, 0.5, 1, 2, and 4 (0?=?constant frequencies). Competitor amplitude contours were either constant, or time-reversed and rate-adjusted in parallel with the frequency contour. Adding a competitor typically reduced intelligibility; this reduction increased with competitor rate until the rate was at least twice that of the target sentences. Similarity in the results for the two amplitude conditions confirmed that formant amplitude contours do not influence across-formant grouping. The findings indicate that competitor efficacy is not tuned to the rate of the target sentences; most probably, it depends primarily on the overall rate of frequency variation in the competitor formants. This suggests that, when segregating the speech of concurrent talkers, differences in speech rate may not be a significant cue for across-frequency grouping of formants.
Resumo:
The following thesis describes the computer modelling of radio frequency capacitively coupled methane/hydrogen plasmas and the consequences for the reactive ion etching of (100) GaAs surfaces. In addition a range of etching experiments was undertaken over a matrix of pressure, power and methane concentration. The resulting surfaces were investigated using X-ray photoelectron spectroscopy and the results were discussed in terms of physical and chemical models of particle/surface interactions in addition to the predictions for energies, angles and relative fluxes to the substrate of the various plasma species. The model consisted of a Monte Carlo code which followed electrons and ions through the plasma and sheath potentials whilst taking account of collisions with background neutral gas molecules. The ionisation profile output from the electron module was used as input for the ionic module. Momentum scattering interactions of ions with gas molecules were investigated via different models and compared against results given by quantum mechanical code. The interactions were treated as central potential scattering events and the resulting neutral cascades were followed. The resulting predictions for ion energies at the cathode compared well to experimental ion energy distributions and this verified the particular form of the electrical potentials used and their applicability in the particular geometry plasma cell used in the etching experiments. The final code was used to investigate the effect of external plasma parameters on the mass distribution, energy and angles of all species impingent on the electrodes. Comparisons of electron energies in the plasma also agreed favourably with measurements made using a Langmuir electric probe. The surface analysis showed the surfaces all to be depleted in arsenic due to its preferential removal and the resultant Ga:As ratio in the surface was found to be directly linked to the etch rate. The etch rate was determined by the methane flux which was predicted by the code.
Resumo:
In an isolated syllable, a formant will tend to be segregated perceptually if its fundamental frequency (F0) differs from that of the other formants. This study explored whether similar results are found for sentences, and specifically whether differences in F0 (?F0) also influence across-formant grouping in circumstances where the exclusion or inclusion of the manipulated formant critically determines speech intelligibility. Three-formant (F1 + F2 + F3) analogues of almost continuously voiced natural sentences were synthesized using a monotonous glottal source (F0 = 150 Hz). Perceptual organization was probed by presenting stimuli dichotically (F1 + F2C + F3; F2), where F2C is a competitor for F2 that listeners must resist to optimize recognition. Competitors were created using time-reversed frequency and amplitude contours of F2, and F0 was manipulated (?F0 = ±8, ±2, or 0 semitones relative to the other formants). Adding F2C typically reduced intelligibility, and this reduction was greatest when ?F0 = 0. There was an additional effect of absolute F0 for F2C, such that competitor efficacy was greater for higher F0s. However, competitor efficacy was not due to energetic masking of F3 by F2C. The results are consistent with the proposal that a grouping “primitive” based on common F0 influences the fusion and segregation of concurrent formants in sentence perception.
Resumo:
How speech is separated perceptually from other speech remains poorly understood. In a series of experiments, perceptual organisation was probed by presenting three-formant (F1+F2+F3) analogues of target sentences dichotically, together with a competitor for F2 (F2C), or for F2+F3, which listeners must reject to optimise recognition. To control for energetic masking, the competitor was always presented in the opposite ear to the corresponding target formant(s). Sine-wave speech was used initially, and different versions of F2C were derived from F2 using separate manipulations of its amplitude and frequency contours. F2Cs with time-varying frequency contours were highly effective competitors, whatever their amplitude characteristics, whereas constant-frequency F2Cs were ineffective. Subsequent studies used synthetic-formant speech to explore the effects of manipulating the rate and depth of formant-frequency change in the competitor. Competitor efficacy was not tuned to the rate of formant-frequency variation in the target sentences; rather, the reduction in intelligibility increased with competitor rate relative to the rate for the target sentences. Therefore, differences in speech rate may not be a useful cue for separating the speech of concurrent talkers. Effects of competitors whose depth of formant-frequency variation was scaled by a range of factors were explored using competitors derived either by inverting the frequency contour of F2 about its geometric mean (plausibly speech-like pattern) or by using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Competitor efficacy depended on the overall depth of frequency variation, not depth relative to that for the other formants. Furthermore, the triangle-wave competitors were as effective as their more speech-like counterparts. Overall, the results suggest that formant-frequency variation is critical for the across-frequency grouping of formants but that this grouping does not depend on speech-specific constraints.
Resumo:
How speech is separated perceptually from other speech remains poorly understood. Recent research indicates that the ability of an extraneous formant to impair intelligibility depends on the variation of its frequency contour. This study explored the effects of manipulating the depth and pattern of that variation. Three formants (F1+F2+F3) constituting synthetic analogues of natural sentences were distributed across the 2 ears, together with a competitor for F2 (F2C) that listeners must reject to optimize recognition (left = F1+F2C; right = F2+F3). The frequency contours of F1 − F3 were each scaled to 50% of their natural depth, with little effect on intelligibility. Competitors were created either by inverting the frequency contour of F2 about its geometric mean (a plausibly speech-like pattern) or using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Adding a competitor typically reduced intelligibility; this reduction depended on the depth of F2C variation, being greatest for 100%-depth, intermediate for 50%-depth, and least for 0%-depth (constant) F2Cs. This suggests that competitor impact depends on overall depth of frequency variation, not depth relative to that for the target formants. The absence of tuning (i.e., no minimum in intelligibility for the 50% case) suggests that the ability to reject an extraneous formant does not depend on similarity in the depth of formant-frequency variation. Furthermore, triangle-wave competitors were as effective as their more speech-like counterparts, suggesting that the selection of formants from the ensemble also does not depend on speech-specific constraints.
Resumo:
How speech is separated perceptually from other speech remains poorly understood. Recent research indicates that the ability of an extraneous formant to impair intelligibility depends on the variation of its frequency contour. This study explored the effects of manipulating the depth and pattern of that variation. Three formants (F1+F2+F3) constituting synthetic analogues of natural sentences were distributed across the 2 ears, together with a competitor for F2 (F2C) that listeners must reject to optimize recognition (left = F1+F2C; right = F2+F3). The frequency contours of F1 - F3 were each scaled to 50% of their natural depth, with little effect on intelligibility. Competitors were created either by inverting the frequency contour of F2 about its geometric mean (a plausibly speech-like pattern) or using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Adding a competitor typically reduced intelligibility; this reduction depended on the depth of F2C variation, being greatest for 100%-depth, intermediate for 50%-depth, and least for 0%-depth (constant) F2Cs. This suggests that competitor impact depends on overall depth of frequency variation, not depth relative to that for the target formants. The absence of tuning (i.e., no minimum in intelligibility for the 50% case) suggests that the ability to reject an extraneous formant does not depend on similarity in the depth of formant-frequency variation. Furthermore, triangle-wave competitors were as effective as their more speech-like counterparts, suggesting that the selection of formants from the ensemble also does not depend on speech-specific constraints. © 2014 The Author(s).
Resumo:
How speech is separated perceptually from other speech remains poorly understood. In a series of experiments, perceptual organisation was probed by presenting three-formant (F1+F2+F3) analogues of target sentences dichotically, together with a competitor for F2 (F2C), or for F2+F3, which listeners must reject to optimise recognition. To control for energetic masking, the competitor was always presented in the opposite ear to the corresponding target formant(s). Sine-wave speech was used initially, and different versions of F2C were derived from F2 using separate manipulations of its amplitude and frequency contours. F2Cs with time-varying frequency contours were highly effective competitors, whatever their amplitude characteristics, whereas constant-frequency F2Cs were ineffective. Subsequent studies used synthetic-formant speech to explore the effects of manipulating the rate and depth of formant-frequency change in the competitor. Competitor efficacy was not tuned to the rate of formant-frequency variation in the target sentences; rather, the reduction in intelligibility increased with competitor rate relative to the rate for the target sentences. Therefore, differences in speech rate may not be a useful cue for separating the speech of concurrent talkers. Effects of competitors whose depth of formant-frequency variation was scaled by a range of factors were explored using competitors derived either by inverting the frequency contour of F2 about its geometric mean (plausibly speech-like pattern) or by using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Competitor efficacy depended on the overall depth of frequency variation, not depth relative to that for the other formants. Furthermore, the triangle-wave competitors were as effective as their more speech-like counterparts. Overall, the results suggest that formant-frequency variation is critical for the across-frequency grouping of formants but that this grouping does not depend on speech-specific constraints. © Springer Science+Business Media New York 2013.
Resumo:
Low and high water periods create contrasting challenges for trees inhabiting periodically flooded wetlands. Low to moderate flood durations and frequencies may bring nutrient subsidies, while greater hydroperiods can be energetically stressful because of oxygen deficiency. We tested the hypothesis that hydroperiod affects the growth of mangrove seedlings and saplings in a greenhouse experiment by varying flood duration while keeping salinity and soil fertility constant. We measured the growth of mangrove trees along a hydroperiod gradient over a two-year period by tracking fine-scale diameter increment. Greenhouse growth studies indicated that under a full range of annual flood durations (0–8760 h/year), hydroperiod alone exerted a significant influence on growth for one species, Laguncularia racemosa, when flooding was imposed for two growing seasons. Field evaluations, on the other hand, indicated that increased flood duration may provide nutrient subsidies for tree growth. Diameter growth was related curvilinearly to site hydroperiod, including flood duration and frequency, as well as to salinity and soil fertility. An analysis of soil physico-chemical parameters suggests that phosphorus fertility, which was also linked directly to hydroperiod, is likely to influence growth on south Florida mangrove sites. The physical removal of phosphorus by greater flood frequencies from upland sources and/or addition of phosphorus from tidal flooding balanced against increased soil aeration and reduced water deficits may be an extremely important growth determinant for south Florida mangroves.