968 resultados para ASSIGNMENT
Resumo:
It is now possible to calculate the nine-dimensional rovibrational wavefunctions of sequentially bonded four-atom molecules variationally without dynamical approximation. In the case of HCCH, the simplest such molecule, many hundreds of rovibrational (J = 0, 1, 2) levels can be converged to better than 1.5 cm −1. Variational calculations of this kind are used here systematically to refine the well-known quartic valence-coordinate forcefleld of Strey and Mills [J.Mol. Spectrosc.59, 103-115 (1976)] against experimental term values up to three C-H stretch quanta for the principal and two deuterated isotopomers, yielding a new surface that reproduces the energies of all the known Σ, Π, and Δ states of these species up to the energy of two C-H stretch quanta with an rms error of 3 cm−1 . The refined forcefield is used to study the resonances associated with the accidental degeneracies (ν2 + ν4 + ν5, ν3) and (ν2 + 2ν5, ν1) in the principal isotopomer, leading to a clarification of the assignment of she experimentally detected states in the 2ν3 and 3ν3, polyads, and to the finding that vibrational Coriolis (kinetic energy) terms, rather than quartic anharmonicities in the potential, are the primary cause of the resonant interactions. Using a new cubic ab initio electric dipole field to calculate IR absorption coefficients, 24 undetected Σ and Π states of 1H12C12C1H and 5 undetected Σ states of D12C12CD are identified as candidates for experimental study, and their calculated energies and assignments are given.
Resumo:
Variation calculations of the vibration–rotation energy levels of many isotopomers of HCN are reported, for J=0, 1, and 2, extending up to approximately 8 quanta of each of the stretching vibrations and 14 quanta of the bending mode. The force field, which is represented as a polynomial expansion in Morse coordinates for the bond stretches and even powers of the angle bend, has been refined by least squares to fit simultaneously all observed data on the Σ and Π state vibrational energies, and the Σ state rotational constants, for both HCN and DCN. The observed vibrational energies are fitted to roughly ±0.5 cm−1, and the rotational constants to roughly ±0.0001 cm−1. The force field has been used to predict the vibration rotation spectra of many isotopomers of HCN up to 25 000 cm−1. The results are consistent with the axis‐switching assignments of some weak overtone bands reported recently by Jonas, Yang, and Wodtke, and they also fit and provide the assignment for recent observations by Romanini and Lehmann of very weak absorption bands above 20 000 cm−1.
Resumo:
High resolution infrared spectra of the ν9 and ν10 perpendicular fundamentals of the allene molecule are reported, in which the J structure in the sub-bands has been partially resolved. Analysis of the latter shows that the vibrational origin ν9 = 999 cm−1, some 35 cm−1 below previous assignments. The pronounced asymmetry in the intensity distribution of the rotational structure which this assignment implies is shown to be expected theoretically, due to the Coriolis perturbations involved, and it is interpreted in terms of the sign and magnitude of the ratio of the dipole moment derivatives in the two fundamentals. The results of this analysis are shown to be in good agreement with observations on allene-1.1-d2, where similar intensity perturbations are observed, and with an independent analysis of the ν8 band of allene-h4. The A rotational constant of allene-h4 is found to have the value 4.82 ± 0.01 cm−1, and for the molecular geometry we obtain r(CH) = 1.084 A, r(CC) = 1.308 A, and HCH = 118.4°. A partial analysis of the rotational structure of the hot bands (ν9 + ν11 − ν11) and (ν10 + ν11 − ν11) is presented; these provide an example of a strong Coriolis interaction between nearly degenerate A1A2 and B1B2 pairs of vibrational levels. Some localized rotational perturbations in the ν9 and ν10 fundamentals are also noted, and their possible interpretations are discussed.
Resumo:
The microwave spectra of 2-aminopyridine-NH2, -ND2, and of both of the two possible -NHD molecules have been observed and assigned in the 0+ vibrational state of the amino group inversion vibration; the assignment for three of the molecules in the 0− state is also made. From intensity measurements the 0+-0− splitting is estimated to be 135 ± 25 cm−1 for the -NH2 molecule and 95 ± 30 cm−1 for the -ND2 molecule. The rotational constants are interpreted in terms of a structure in which the amino group is bent about 32° out of the molecular plane, the c coordinates of the two amino H atoms being 0.21 and 0.28 Å. Stark effect measurements give a dipole moment of about 0.9 D which is almost entirely in the b axis, and which changes quite significantly between the 0+ and 0− states.
Resumo:
Newly observed data on the rotational constants of carbon suboxide in excited vibrational states of the low-wavenumber bending vibration ν7 have been successfully interpreted in terms of the two-dimensional anharmonic oscillator wavefunctions associated with this vibration. By combining these results with published infrared and Raman spectra the vibrational assignment has been extended and a refined bending potential for ν7 has been derived: this has a minimum at a bending angle of about 24° at the central C atom, with an energy maximum at the linear configuration some 23 cm−1 above the minimum. From similar data on the combination and hot bands of ν7 with ν4 (1587 cm−1) and ν2 (786 cm−1) the effective ν7 bending potential has also been determined in the one-quantum excited states of ν4 and ν2. The effective ν7 potential shows significant changes from the ground vibrational state; the central hump in the ν7 potential surface is increased to about 50 cm−1 in the v4 = 1 state, and decreased to about 1 cm−1 in the v2 = 1 state. In the light of these results vibrational assignments are suggested for most of the observed bands in the infrared and Raman spectra of C3O2.
Resumo:
The J = 2−1 microwave spectrum of six isotopic species of HSiF3 has been observed and assigned in excited states of five of the six fundamental vibrations. The assignment is based on relative intensities, double resonance experiments, and trial anharmonic force constant calculations. Analysis of the spectra leads to experimental values for five of the constants, all three l-doubling constants qt, one Fermi resonance constant φ233, and one zeta constant. The harmonic force field has been refined to all the available data on vibration wavenumbers, centrifugal distortion constants, and zeta constants. The cubic anharmonic force field has been refined to the data on and qt constants, using two models: a valence force model with two cubic force constants for SiH and SiF stretching, and a more sophisticated model. With the help of these calculations, the following equilibrium structure has been determined: re(SiH) = 1.4468(±5) Å, re(SiF) = 1.5624(±1) Å, HSiF = 110.64(±3)°,
Resumo:
High-resolution vibration-rotation spectra of monofluoroacetylene are reported for many bands in the region 1700 to 7500 cm−1. The spectra were observed on Nicolet 7199 and Bruker IFS 120 Fourier spectrometers, with resolutions of about 0.06 and 0.003 cm−1, respectively. About 130 bands have been observed in this region, of which about 80 have been rotationally analyzed. The assignment of vibrational labels to the higher energy levels is complicated by the effects of strong Fermi resonances, and many weak localized rotational resonances are observed.
Resumo:
High‐resolution infrared spectra of B2H6 vapor are reported. The sample was prepared from the naturally occurring 11B☒10B isotopic mixture. The rotational structure of the infrared bands has been analysed for Coriolis perturbations due to rotation about the axis of least moment of inertia (the B⋅⋅⋅B axis). The following results have been obtained: (a) interaction between the Type A fundamental ν18 and the inactive fundamental ν5 has been observed, thus confirming the assignment of ν5 at 833 cm—1, giving ∣ ζ5,18Z ∣=0.55±0.05; (b) interaction observed between the Type A combination band (ν10+ν12) at 1283 cm—1 and the inactive combination (ν10+ν7) gives an estimate of the unobserved fundamental ν7 as 850±30 cm—1, and an estimate of ∣ ζ7,12Z ∣=0.6±0.1; (c) the absence of any observed perturbation of the Type C fundamental ν14 at 973 cm—1, suggests, by negative arguments, that either the unobserved fundamental ν9 does not lie in the frequency range 900 to 1100 cm—1, or ∣ ζ9,14Z ∣<0.2. The assignment of the unobserved fundamental vibrations of diborane is discussed in the light of this evidence.
Resumo:
Development of a new species of malacosporean myxozoan (Buddenbrockia allmani n. sp.) in the bryozoan Lophopus crystallinus is described. Early stages, represented by isolated cells or small groups, were observed in the host's body wall or body cavity. Multiplication and rearrangement of cells gave an outer cell layer around a central mass. The outer cells made contact by filopodia and established adherens junctions. Sporoplasmosomes were a notable feature of early stages, but these were lost in subsequent development. Typical malacosporean sacs were formed from these groups by attachment of the inner (luminal) cells by a basal lamina to the outer layer (mural cells). Division of luminal cells gave rise to a population of cells that was liberated into the lumen of the sac. Mitotic spindles in open mitosis and prophase stages of meiosis were observed in luminal cells. Centrioles were absent. Detached luminal cells assembled to form spores with four polar capsules and several valve cells surrounding two sporoplasms with secondary cells. Restoration of sporoplasmosomes occurred in primary sporoplasms. A second type of sac was observed with highly irregular mural cells and stellate luminal cells. A radially striated layer and dense granules in the polar capsule wall, and previous data on 18 rDNA sequences enabled assignment of the species to the genus Buddenbrockia, while specific diagnosis relied on the rDNA data and on sac shape and size.
Resumo:
Here, we analyze the complete coding sequences of all recognized tick-borne flavivirus species, including Gadgets Gully, Royal Farm and Karshi virus, seabird-associated flaviviruses, Kadam virus and previously uncharacterized isolates of Kyasanur Forest disease virus and Omsk hemorrhagic fever virus. Significant taxonomic improvements are proposed, e.g. the identification of three major groups (mammalian, seabird and Kadam tick-borne flavivirus groups), the creation of a new species (Karshi virus) and the assignment of Tick-borne encephalitis and Louping ill viruses to a unique species (Tick-borne encephalitis virus) including four viral types (i.e. Western Tick-borne encephalitis virus, Eastern Tick-borne encephalitis virus, Turkish sheep Tick-borne encephalitis virus and Louping ill Tick-borne encephalitis virus). The analyses also suggest a complex relationship between viruses infecting birds and those infecting mammals. Ticks that feed on both categories of vertebrates may constitute the evolutionary bridge between the three distinct identified lineages.
Resumo:
Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye and analysed by two-dimensional difference gel electrophoresis. Gel images analysed off-line, using the DeCyder image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.
Resumo:
Gel diagrams based on tube inversion and oscillatory rheometry are reported for Pluronic copolymers F127 (E98P67E98) and P123 (E21P67E21) in mixtures with anionic surfactant sodium dodecyl sulfate (SDS). Total concentrations (e, SDS+copolymer) were as high as 50 wt% with mole ratios SDS/copolymer (mr) in the ranges 1-5 (F127) a lid 1-7 (PI 23). Temperatures were its high as 90 degrees C. Determination of the temperature dependences of the dynamic moduli served to confirm the gel boundaries from tube inversion and to reveal the high elastic moduli of the gels, e.g., compared at corn parable positions in the gel phase, a 50 wt% SDS/P123 wit h mr = 7 had G' three times that of a corresponding gel of P123 alone. Sin all-angle X-ray scattering (SAX S) was used to show that the structures of all the SDS/F127 gels were bee and that the structures of the SDS/P123 gels with mr = I were either fcc(c = 30 wt%) or hex (c = 40 wt%). Assignment of structures to SDS/P123 gels with values of mr in the range 3-7 was more difficult, as high-order scattering peaks Could be very weak, and at the higher values of c and mr, the SAXS peaks included multiple reflections.
Resumo:
Sixteen neutral mixed ligand thiosemicarbazone complexes of ruthenium having general formula [Ru(PPh3)(2)L-2], where LH = 1-(arylidine)4-aryl thiosemicarbazones, have been synthesized and characterized. All complexes are diamagnetic and hence ruthenium is in the +2 oxidation state (low-spin d(6), S = 0). The complexes show several intense peaks in the visible region due to allowed metal to ligand charge transfer transitions. The structures of four of the complexes have been determined by single-crystal X-ray diffraction and they show that thiosemicarbazone ligands coordinate to the ruthenium center through the hydrazinic nitrogen and sulfur forming four-membered chelate rings with ruthenium in N2S2P2 coordination environment. In dichloromethane solution, the complexes show two quasi-reversible oxidative responses corresponding to loss of electron from HOMO and HOMO - 1. The E-0 values of the above two oxidations shows good linear relationship with Hammett substituents constant (sigma) as well as with the HOMO energy of the molecules calculated by the EHMO method. A DFT calculation on one representative complex suggests that there is appreciable contribution of the sulfur p-orbitals to the HOMO and HOMO - 1. Thus, assignment of the oxidation state of the metal in such complexes must be made with caution. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Six Ru(II) complexes of formula [Ru(L)(2)(PPh3)(2)] have been prepared where LH = 4-(aryl)thiosemicarbazones of thiophen-2-carbaldehyde. X-ray crystal structures of five of the complexes are reported. In all the complexes ruthenium is six coordinate with a distorted octahedral cis-P-2, cis-N-2, trans-S-2 donor environment, and each of the two thiosemicarbazone ligands are coordinated in a bidentate fashion forming a four membered chelate ring. The complexes undergo a one-electron oxidation at similar to 0.5 V vs. Ag/AgCl. The EPR spectrum of the electrochemically oxidized solution at 100 K shows a rhombic signal, with transitions at g(1) = 2.27, g(2) = 2.00 and g(3) = 1.80. DFT calculations on one of the complexes suggest that there is 35% ruthenium and 17% sulfur orbital contribution to the HOMO. These results suggest that the assignment of metal atom oxidation states in these compounds is not unambiguous. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The morphology in the solid state of a series of triblock copolymers comprising a poly(ethylene glycol) (PEG) midblock and symmetric poly(gamma-benzyl-L-glutamate) (PBLG) end blocks has been studied using X-ray scattering and microscopy techniques. Transmission electron microscopy (TEM) on samples selectively stained with uranyl acetate provided clear assignment of morphologies for as-cast and annealed samples. The thickness of both PEG and PBLG domains was in good agreement with calculations based on the conformations of the respective chains, allowing for the crystal or amorphous state of PEG and the a-helical or P-sheet structure of the PBLG. Atomic force microscopy provided complementary information on surface morphology for several samples that was in good agreement with the structure observed by TEM. A morphology diagram was constructed. Cylindrical structures were observed for ordered samples with low f(PBLG), whereas at higher f(PLBG) there was evidence for broken lamellar and "hockey puck" nanostructures. Regular lamellae were observed for intermediate compositions.