936 resultados para ARRAY ILLUMINATOR
Resumo:
Multiple sclerosis (MS) is a complex autoimmune disorder of the CNS with both genetic and environmental contributing factors. Clinical symptoms are broadly characterized by initial onset, and progressive debilitating neurological impairment. In this study, RNA from MS chronic active and MS acute lesions was extracted, and compared with patient matched normal white matter by fluorescent cDNA microarray hybridization analysis. This resulted in the identification of 139 genes that were differentially regulated in MS plaque tissue compared to normal tissue. Of these, 69 genes showed a common pattern of expression in the chronic active and acute plaque tissues investigated (Pvalue<0.0001, ρ=0.73, by Spearman's ρ analysis); while 70 transcripts were uniquely differentially expressed (≥1.5-fold) in either acute or chronic active tissues. These results included known markers of MS such as the myelin basic protein (MBP) and glutathione S-transferase (GST) M1, nerve growth factors, such as nerve injury-induced protein 1 (NINJ1), X-ray and excision DNA repair factors (XRCC9 and ERCC5) and X-linked genes such as the ribosomal protein, RPS4X. Primers were then designed for seven array-selected genes, including transferrin (TF), superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1), GSTP1, crystallin, alpha-B (CRYAB), phosphomannomutase 1 (PMM1) and tubulin β-5 (TBB5), and real time quantitative (Q)-PCR analysis was performed. The results of comparative Q-PCR analysis correlated significantly with those obtained by array analysis (r=0.75, Pvalue<0.01, by Pearson's bivariate correlation). Both chronic active and acute plaques shared the majority of factors identified suggesting that quantitative, rather than gross qualitative differences in gene expression pattern may define the progression from acute to chronic active plaques in MS.
Resumo:
The purpose of the Reimagining Learning Spaces project was to conduct an empirical study that would result in findings to inform the design and use of physical school facilities and examine the ways in which these constructions influence pedagogy. The study focused on newly-established school libraries in Queensland, many of which had been established with funding from the Federal Government’s Building the Education Revolution economic stimulus program. To explore the field, the study sought multiple perspectives that included those of school students as well as teacher-librarians and other key school staff, addressing the following focus question: - How does the physical environment of school libraries influence pedagogic practices and learning outcomes? Further research questions that guided the inquiry included: - What are the implications for teacher-librarians when transitioning into a new library learning space? - How do members of the school community (principals, teachers, teacher-librarians and students) experience the creation of a new school library learning space? - How do school students imagine the design and use of engaging library learning spaces? An extensive review explored Australian and international literature based on the research questions, focused on the following major areas: • School library renewal: trends in reimagining the place of libraries in virtual and real space • School libraries as learning spaces: the expanded role of school libraries in whole-school pedagogical support. • The role of teacher-librarians in new times • Built environments and the implications for learning • Learners and learning in newly established spaces • Learning space design: perspectives, research and principles • Pedagogical principles and voices of experience • Transitions to newly created learning spaces Approach Using an innovative qualitative research design, Reimagining Learning Spaces investigated learner and teacher perspectives across three intersecting domains exploring: - Imagined spaces: learners’ imaginative concepts of learning within engaging learning environments; - Emerging spaces: experiences of teacher-librarians in the transition into new spaces for learning, and - Established spaces: learners’ and teachers’ perceptions of ways in which the physical environment influences and shapes pedagogy. Seven schools that had recently benefitted from the BER program became the research sites at which data were collected from teacher-librarians, teachers, school leaders and students. With this range of participants, an appropriately diverse set of data collection tools was developed, including video interviews, drawings, and focus groups. Evocative narrative case studies (Simons 2009) were developed from the data, representing the voices of users of learning spaces. Key findings The study’s findings are presented in this report and complemented by an array of visual materials on the project web site http:// The report includes: • a set of seven cases studies that reveal nuanced experiences of designing and creating school libraries, based on the narrative of key stakeholders (teacher-librarians, teachers, students and principals) • thematic discussion of student imaginings of their ideal school library, based on drawings and narrative of students at the seven case study schools • critical analysis of the case study and student imaginings, focusing on implications for (re)designing school learning spaces and pedagogy, and responding to the study’s overarching research question - .17 recommendations to support: designing, transitioning and reimagining pedagogy; leadership; and policy development
Resumo:
Distributed Wireless Smart Camera (DWSC) network is a special type of Wireless Sensor Network (WSN) that processes captured images in a distributed manner. While image processing on DWSCs sees a great potential for growth, with its applications possessing a vast practical application domain such as security surveillance and health care, it suffers from tremendous constraints. In addition to the limitations of conventional WSNs, image processing on DWSCs requires more computational power, bandwidth and energy that presents significant challenges for large scale deployments. This dissertation has developed a number of algorithms that are highly scalable, portable, energy efficient and performance efficient, with considerations of practical constraints imposed by the hardware and the nature of WSN. More specifically, these algorithms tackle the problems of multi-object tracking and localisation in distributed wireless smart camera net- works and optimal camera configuration determination. Addressing the first problem of multi-object tracking and localisation requires solving a large array of sub-problems. The sub-problems that are discussed in this dissertation are calibration of internal parameters, multi-camera calibration for localisation and object handover for tracking. These topics have been covered extensively in computer vision literatures, however new algorithms must be invented to accommodate the various constraints introduced and required by the DWSC platform. A technique has been developed for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera internal parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera's optical centre and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. For object localisation, a novel approach has been developed for the calibration of a network of non-overlapping DWSCs in terms of their ground plane homographies, which can then be used for localising objects. In the proposed approach, a robot travels through the camera network while updating its position in a global coordinate frame, which it broadcasts to the cameras. The cameras use this, along with the image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to localised objects moving within the network. In addition, to deal with the problem of object handover between DWSCs of non-overlapping fields of view, a highly-scalable, distributed protocol has been designed. Cameras that follow the proposed protocol transmit object descriptions to a selected set of neighbours that are determined using a predictive forwarding strategy. The received descriptions are then matched at the subsequent camera on the object's path using a probability maximisation process with locally generated descriptions. The second problem of camera placement emerges naturally when these pervasive devices are put into real use. The locations, orientations, lens types etc. of the cameras must be chosen in a way that the utility of the network is maximised (e.g. maximum coverage) while user requirements are met. To deal with this, a statistical formulation of the problem of determining optimal camera configurations has been introduced and a Trans-Dimensional Simulated Annealing (TDSA) algorithm has been proposed to effectively solve the problem.
Resumo:
Myopia (short-sightedness) is a common ocular disorder of children and young adults. Studies primarily using animal models have shown that the retina controls eye growth and the outer retina is likely to have a key role. One theory is that the proportion of L (long-wavelength-sensitive) and M (medium-wavelength-sensitive) cones is related to myopia development; with a high L/M cone ratio predisposing individuals to myopia. However, not all dichromats (persons with red-green colour vision deficiency) with extreme L/M cone ratios have high refractive errors. We predict that the L/M cone ratio will vary in individuals with normal trichromatic colour vision but not show a systematic difference simply due to refractive error. The aim of this study was to determine if L/M cone ratios in the central 30° are different between myopic and emmetropic young, colour normal adults. Information about L/M cone ratios was determined using the multifocal visual evoked potential (mfVEP). The mfVEP can be used to measure the response of visual cortex to different visual stimuli. The visual stimuli were generated and measurements performed using the Visual Evoked Response Imaging System (VERIS 5.1). The mfVEP was measured when the L and M cone systems were separately stimulated using the method of silent substitution. The method of silent substitution alters the output of three primary lights, each with physically different spectral distributions to control the excitation of one or more photoreceptor classes without changing the excitation of the unmodulated photoreceptor classes. The stimulus was a dartboard array subtending 30° horizontally and 30° vertically on a calibrated LCD screen. The m-sequence of the stimulus was 215-1. The N1-P1 amplitude ratio of the mfVEP was used to estimate the L/M cone ratio. Data were collected for 30 young adults (22 to 33 years of age), consisting of 10 emmetropes (+0.3±0.4 D) and 20 myopes (–3.4±1.7 D). The stimulus and analysis techniques were confirmed using responses of two dichromats. For the entire participant group, the estimated central L/M cone ratios ranged from 0.56 to 1.80 in the central 3°-13° diameter ring and from 0.94 to 1.91 in the more peripheral 13°-30° diameter ring. Within 3°-13°, the mean L/M cone ratio of the emmetropic group was 1.20±0.33 and the mean was similar, 1.20±0.26, for the myopic group. For the 13°-30° ring, the mean L/M cone ratio of the emmetropic group was 1.48±0.27 and it was slightly lower in the myopic group, 1.30±0.27. Independent-samples t-test indicated no significant difference between the L/M cone ratios of the emmetropic and myopic group for either the central 3°-13° ring (p=0.986) or the more peripheral 13°-30° ring (p=0.108). The similar distributions of estimated L/M cone ratios in the sample of emmetropes and myopes indicates that there is likely to be no association between the L/M cone ratio and refractive error in humans.
Resumo:
Energy policy is driving renewable energy deployment with most of the developed countries having some form of renewable energy portfolio standard and emissions reduction target. To deliver upon these ambitious targets, those renewable energy technologies that are commercially available, such as wind and solar, are being deployed, but inherently have issues with intermittency of supply. To overcome these issues, storage options will need to be introduced into the distribution network with benefits for both demand management and power systems quality. How this can be utilised most effectively within the distribution network will allow for an even greater proportion of our energy demand to be met through renewable resources and meet the aspirational targets set. The distribution network will become a network of smart-grids, but to work efficiently and effectively, power quality issues surrounding intermittency must be overcome, with storage being a major factor in this solution.
Resumo:
The University of Queensland UltraCommuter project is the demonstration of an ultra-light weight, low drag, energy efficient and low polluting, electric commuter vehicle equipped with a 2.5m2 on-board solar array. A key goal of the project is to make the vehicle predominantly self-sufficient from solar power for normal driving purposes , so that it does not require charging or refuelling from off-board sources. This paper examines the technical feasibility of the solar-powered commuter vehicle concept, as it applies the UltraCommuter project. A parametric description of a solar-powered commuter vehicle is presented. Real solar insolation data is then used to predict the solar driving range for the UltraCommuter and this is compared to typical urban usage patterns for commuter vehicles in Queensland. A comparative analysis of annual greenhouse gas emissions from the vehicle is also presented. The results show that the UltraCommuter’s on-board solar array can provide substantial supplementation of the energy required for normal driving, powering 90% of annual travel needs for an average QLD passenger vehicle. The vehicle also has excellent potential to reduce annual greenhouse gas emissions from the private transport sector, achieving a 98% reduction in CO2 emissions when compared to the average QLD passenger vehicle. Lastly, the vehicle battery pack provides for tolerance to consecutive days of poor weather without resorting to grid charging, giving uninterrupted functionality to the user. These results hold great promise for the technical feasibility of the solar-powered commuter vehicle concept.
Resumo:
The early warning based on real-time prediction of rain-induced instability of natural residual slopes helps to minimise human casualties due to such slope failures. Slope instability prediction is complicated, as it is influenced by many factors, including soil properties, soil behaviour, slope geometry, and the location and size of deep cracks in the slope. These deep cracks can facilitate rainwater infiltration into the deep soil layers and reduce the unsaturated shear strength of residual soil. Subsequently, it can form a slip surface, triggering a landslide even in partially saturated soil slopes. Although past research has shown the effects of surface-cracks on soil stability, research examining the influence of deep-cracks on soil stability is very limited. This study aimed to develop methodologies for predicting the real-time rain-induced instability of natural residual soil slopes with deep cracks. The results can be used to warn against potential rain-induced slope failures. The literature review conducted on rain induced slope instability of unsaturated residual soil associated with soil crack, reveals that only limited studies have been done in the following areas related to this topic: - Methods for detecting deep cracks in residual soil slopes. - Practical application of unsaturated soil theory in slope stability analysis. - Mechanistic methods for real-time prediction of rain induced residual soil slope instability in critical slopes with deep cracks. Two natural residual soil slopes at Jombok Village, Ngantang City, Indonesia, which are located near a residential area, were investigated to obtain the parameters required for the stability analysis of the slope. A survey first identified all related field geometrical information including slope, roads, rivers, buildings, and boundaries of the slope. Second, the electrical resistivity tomography (ERT) method was used on the slope to identify the location and geometrical characteristics of deep cracks. The two ERT array models employed in this research are: Dipole-dipole and Azimuthal. Next, bore-hole tests were conducted at different locations in the slope to identify soil layers and to collect undisturbed soil samples for laboratory measurement of the soil parameters required for the stability analysis. At the same bore hole locations, Standard Penetration Test (SPT) was undertaken. Undisturbed soil samples taken from the bore-holes were tested in a laboratory to determine the variation of the following soil properties with the depth: - Classification and physical properties such as grain size distribution, atterberg limits, water content, dry density and specific gravity. - Saturated and unsaturated shear strength properties using direct shear apparatus. - Soil water characteristic curves (SWCC) using filter paper method. - Saturated hydraulic conductivity. The following three methods were used to detect and simulate the location and orientation of cracks in the investigated slope: (1) The electrical resistivity distribution of sub-soil obtained from ERT. (2) The profile of classification and physical properties of the soil, based on laboratory testing of soil samples collected from bore-holes and visual observations of the cracks on the slope surface. (3) The results of stress distribution obtained from 2D dynamic analysis of the slope using QUAKE/W software, together with the laboratory measured soil parameters and earthquake records of the area. It was assumed that the deep crack in the slope under investigation was generated by earthquakes. A good agreement was obtained when comparing the location and the orientation of the cracks detected by Method-1 and Method-2. However, the simulated cracks in Method-3 were not in good agreement with the output of Method-1 and Method-2. This may have been due to the material properties used and the assumptions made, for the analysis. From Method-1 and Method-2, it can be concluded that the ERT method can be used to detect the location and orientation of a crack in a soil slope, when the ERT is conducted in very dry or very wet soil conditions. In this study, the cracks detected by the ERT were used for stability analysis of the slope. The stability of the slope was determined using the factor of safety (FOS) of a critical slip surface obtained by SLOPE/W using the limit equilibrium method. Pore-water pressure values for the stability analysis were obtained by coupling the transient seepage analysis of the slope using finite element based software, called SEEP/W. A parametric study conducted on the stability of an investigated slope revealed that the existence of deep cracks and their location in the soil slope are critical for its stability. The following two steps are proposed to predict the rain-induced instability of a residual soil slope with cracks. (a) Step-1: The transient stability analysis of the slope is conducted from the date of the investigation (initial conditions are based on the investigation) to the preferred date (current date), using measured rainfall data. Then, the stability analyses are continued for the next 12 months using the predicted annual rainfall that will be based on the previous five years rainfall data for the area. (b) Step-2: The stability of the slope is calculated in real-time using real-time measured rainfall. In this calculation, rainfall is predicted for the next hour or 24 hours and the stability of the slope is calculated one hour or 24 hours in advance using real time rainfall data. If Step-1 analysis shows critical stability for the forthcoming year, it is recommended that Step-2 be used for more accurate warning against the future failure of the slope. In this research, the results of the application of the Step-1 on an investigated slope (Slope-1) showed that its stability was not approaching a critical value for year 2012 (until 31st December 2012) and therefore, the application of Step-2 was not necessary for the year 2012. A case study (Slope-2) was used to verify the applicability of the complete proposed predictive method. A landslide event at Slope-2 occurred on 31st October 2010. The transient seepage and stability analyses of the slope using data obtained from field tests such as Bore-hole, SPT, ERT and Laboratory tests, were conducted on 12th June 2010 following the Step-1 and found that the slope in critical condition on that current date. It was then showing that the application of the Step-2 could have predicted this failure by giving sufficient warning time.
Resumo:
The economics of supporting learning has seen institutional encouragement of a wide range of blended learning initiatives in face to face and online teaching and learning. This has become one of the key drivers for the adoption of technology in teaching, in a manner occassionally guilty of putting the cart before the horse. Learning spaces are increasingly equipped with a dizzying array of technological options testifying to institutional and governmental investment and commitment in supporting face to face blended learning (QUT, 2011, C/4.2). Yet innovation within traditional learning and teaching models faces a number of challenges both at an institutional level and at the teaching coal face. Web 2.0 technologies present a vast array of opportunities to harness and capture the attention of students in engaging learning opportunitites. This presentation will explore technologies supportive of active learning pedagogies.
Resumo:
This study aimed to identify new peptide antigens from Chlamydia (C.) trachomatis in a proof of concept approach which could be used to develop an epitope-based serological diagnostic for C. trachomatis related infertility in women. A bioinformatics analysis was conducted examining several immunodominant proteins from C. trachomatis to identify predicted immunoglobulin epitopes unique to C. trachomatis. A peptide array of these epitopes was screened against participant sera. The participants (all female) were categorized into the following cohorts based on their infection and gynecological history; acute (single treated infection with C. trachomatis), multiple (more than one C. trachomatis infection, all treated), sequelae (PID or tubal infertility with a history of C. trachomatis infection), and infertile (no history of C. trachomatis infection and no detected tubal damage). The bioinformatics strategy identified several promising epitopes. Participants who reacted positively in the peptide 11 ELISA were found to have an increased likelihood of being in the sequelae cohort compared to the infertile cohort with an odds ratio of 16.3 (95% c.i. 1.65 – 160), with 95% specificity and 46% sensitivity (0.19-0.74). The peptide 11 ELISA has the potential to be further developed as a screening tool for use during the early IVF work up and provides proof of concept that there may be further peptide antigens which could be identified using bioinformatics and screening approaches.
Resumo:
A qualitative analysis of the expected dilatation strain field in the vicinity of an array of grain-boundary (GB) dislocations is presented. The analysis provides a basis for the prediction of the critical current densities (jc) across low-angle YBa2Cu3O7- (YBCO) GBs as a function of their energy. The introduction of the GB energy allows the extension of the analysis to high-angle GBs using established models which predict the GB energy as a function of misorientation angle. The results are compared to published data for jc across [001]-tilt YBCO GBs for the full range of misorientations, showing a good fit. Since the GB energy is directly related to the GB structure, the analysis may allow a generalization of the scaling behavior of jc with the GB energy. © 1995 The American Physical Society.
Resumo:
Speeding remains a pervasive road safety problem, increasing both crash frequency and severity. Advertising countermeasures which aim to change individuals’ attitudes and behaviours are a key component in the array of countermeasures aimed at reducing this risky behaviour. Enhancing individuals’ perceptions of the personal relevance of such messages is important for increasing persuasiveness. This study examined what males and females reported as the most concerning aspects associated with (i) receiving a speeding fine, (ii) losing one’s license, and (iii) being involved in a crash. For each of these outcomes, a range of specific and appropriate aspects were assessed. For instance, in relation to receiving a fine, individuals reported the extent to which they would, for example, feel concerned about losing demerit points and paying more in insurance premiums. An online survey of 751 drivers (579 males; 16-79 years) was administered. When controlling for age, overall significant gender differences were found in relation to two of the three outcomes; receiving a fine and being in a crash. Follow-up tests of univariate effects revealed that females consistently reported being significantly more concerned than males on all aspects. Thus, for being fined, females were significantly more concerned with, for example, being caught and receiving a ticket in the mail; while, for being in a crash, specific aspects included, for example, injuring/killing oneself and seeing oneself as not a good/safe driver. The findings are discussed in terms of their implications for developing well-targeted messages aimed at discouraging drivers from speeding.
Resumo:
The term fashion system describes inter-relationships between production and consumption illustrating how the production of fashion is a collective activity. For instance, Yuniya Kawamura notes systems for the production of fashion differ around the globe and are subject to constant change, and Jennifer Craik draws attention to an ‘array of competing and intermeshing systems cutting across western and non-western cultures. In China, Shanghai’s nascent fashion system seeks to emulate the Eurocentric system of Fashion Weeks and industry support groups. It promises emergent designers a platform for global competition, yet there are tensions from within. Interaction with a fashion system inevitably means becoming validated or legitimised. Legitimisation in turn depends upon gatekeepers who make aesthetic judgments about the status, quality and cultural value of a designers work. Notwithstanding the proliferation of fashion media, in Shanghai a new gatekeeper has arrived, seeking to filter authenticity from artifice, offering truth in a fashion market saturated with fakery and the hollowness of foreign consumptive practice, and providing a place of sanctuary for Chinese fashion design. Thus this paper discusses how new agencies are allowing designers in Shanghai greater control over their brand image while creating novel opportunities for promotion and sales. It explores why designers choose this new model and provides new knowledge of the curation of fashion by these gatekeepers.
Resumo:
The term fashion system describes inter-relationships between production and consumption, illustrating how the production of fashion is a collective activity. For instance, Yuniya Kawamura (2011) notes systems for the production of fashion differ around the globe and are subject to constant change, and Jennifer Craik (1994, 6) draws attention to an ‘array of competing and intermeshing systems cutting across western and non-western cultures. In China, Shanghai’s nascent fashion system seeks to emulate the Eurocentric system of Fashion Weeks and industry support groups. It promises designers a platform for global competition, yet there are tensions from within. Interaction with a fashion system inevitably means becoming validated or legitimised. Legitimisation in turn depends upon gatekeepers who make aesthetic judgments about the status, quality, and cultural value of a designers work (Becker 2008). My paper offers a new perspective on legitimisation that is drawn mainly from my PhD research. I argue that some Chinese fashion designers are on the path to becoming global fashion designers because they have embraced a global aesthetic that resonates with the human condition, rather than the manufactured authenticity of a Eurocentric fashion system that perpetuates endless consumption. In this way, they are able to ‘self-legitimise’. I contend these designers are ‘designers for humans’, because they are able to look beyond the mythology of fashion brands, and the Eurocentric fashion system, where they explore the tensions of man and culture in their practice. Furthermore, their design ethos pursues beauty, truth and harmony in the Chinese philosophical sense, as well as incorporating financial return in a process that is still enacted through a fashion system. Accordingly, cultural tradition, heritage and modernity, while still valuable, have less impact on their practice.
Resumo:
Receptor tyrosine kinases (RTKs) and their downstream signalling pathways have long been hypothesized to play key roles in melanoma development. A decade ago, evidence was derived largely from animal models, RTK expression studies and detection of activated RAS isoforms in a small fraction of melanomas. Predictions that overexpression of specific RTKs implied increased kinase activity and that some RTKs would show activating mutations in melanoma were largely untested. However, technological advances including rapid gene sequencing, siRNA methods and phospho-RTK arrays now give a more complete picture. Mutated forms of RTK genes including KIT, ERBB4, the EPH and FGFR families and others are known in melanoma. Additional over- or underexpressed RTKs and also protein tyrosine phosphatases (PTPs) have been reported, and activities measured. Complex interactions between RTKs and PTPs are implicated in the abnormal signalling driving aberrant growth and survival in malignant melanocytes, and indeed in normal melanocytic signalling including the response to ultraviolet radiation. Kinases are considered druggable targets, so characterization of global RTK activity in melanoma should assist the rational development of tyrosine kinase inhibitors for clinical use. © 2011 John Wiley & Sons A/S.
Resumo:
The European Early Lung Cancer (EUELC) project aims to determine if specific genetic alterations occurring in lung carcinogenesis are detectable in the respiratory epithelium. In order to pursue this objective, nonsmall cell lung cancer (NSCLC) patients with a very high risk of developing progressive lung cancer were recruited from 12 centres in eight European countries: France, Germany, southern Ireland, Italy, the Netherlands, Poland, Spain and the UK. In addition, NSCLC patients were followed up every 6 months for 36 months. A European Bronchial Tissue Bank was set up at the University of Liverpool (Liverpool, UK) to optimise the use of biological specimens. The molecular - pathological investigations were subdivided into specific work packages that were delivered by EUELC Partners. The work packages encompassed mutational analysis, genetic instability, methylation profiling, expression profiling utilising immunohistochemistry and chip-based technologies, as well as in-depth analysis of FHIT and RARβ genes, the telomerase catalytic subunit hTERT and genotyping of susceptibility genes in specific pathways. The EUELC project engendered a tremendous collaborative effort, and it enabled the EUELC Partners to establish protocols for assessing molecular biomarkers in early lung cancer with the view to using such biomarkers for early diagnosis and as intermediate end-points in future chemopreventive programmes. Copyright©ERS Journals Ltd 2009.