919 resultados para ANIONS
Resumo:
Using an effective two-body interaction potential, a molecular dynamics study of the structural properties of amorphous ZrF4 phase is presented. The effective pair potential includes steric repulsion, Coulomb interaction due to charge transfer, and charge-dipole interaction due to the large electronic polarizability of anions. The results for structural correlations, such as pair distribution functions, coordination numbers, and bond angle distributions are presented. Excellent agreement is obtained by comparing experimental X-ray diffraction and the simulated static X-ray structure factor. © 1993.
Resumo:
In the search for new therapeutic tools against tuberculosis and to further address the therapeutic potential of pyridine-2-thiol 1-oxide (Hmpo) metal complexes, two new octahedral [M(III)(mpo)3] complexes, with M = Ga or Bi, were synthesized and characterized in the solid state and in solution. Attempts to crystallize [Ga(III)(mpo)3] in CH2Cl2 led to single crystals of the reaction product [GaCl(mpo)2], where the gallium(III) ion is in a square basis pyramidal environment, trans-coordinated at the basis to two pyridine-2-thiolato 1-oxide anions acting as bidentate ligands through their oxygen and sulfur atoms. The biological activity of the new [M(III)(mpo)3] complexes together with that of the previously reported Fe(III) analogous compound and the pyridine-2-thiol 1-oxide sodium salt (Na mpo) was evaluated on Mycobacterium tuberculosis. The compounds showed excellent activity, both in the standard strain H37Rv ATCC 27294 (pan-susceptible) and in five clinical isolates that are resistant to the standard first-line anti-tuberculosis drugs isoniazid and rifampicin. These pyridine-2-thiol 1-oxide derivatives are promising compounds for the treatment of resistant tuberculosis.
Resumo:
A montmorillonite from Wyoming-USA was used to prepare an organo-clay complex, named 2-thiazoline-2-thiol-hexadecyltrimethylammonium-clay (TZT-HDTA-clay), for the purpose of the selective adsorption of the heavy metals ions and possible use as a chemically modified carbon paste electrode (CMCPE). Adsorption isotherms of Hg 2+, Pb 2+, Cd 2+, Cu 2+, and Zn 2+ from aqueous solutions as a function of the pH were studied at 298 K. Conditions for quantitative retention and elution were established for each metal by batch and column methods. The organo-clay complex was very selective to Hg(II) in aqueous solution in which other metals and ions were also present. The accumulation voltammetry of Hg(II) was studied at a carbon paste electrode chemically modified with this material. The mercury response was evaluated with respect to the pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. A carbon paste electrode modified by TZT-HDTA-clay showed two peaks: one cathodic peak at about 0.0 V and an anodic peak at 0.25 V, scanning the potential from -0.2 to 0.8 V (0.05 M KNO 3 vs. Ag/AgCl). The anodic peak at 0.25 V presents excellent selectivity for Hg(II) ions in the presence of foreign ions. The detection limit was estimated as 0.1 μg L -1. The precision of determination was satisfactory for the respective concentration level. 2005 © The Japan Society for Analytical Chemistry.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Thirty-seven rainwater samples were collected at Jaú River watershed, Dois Córregos city (SP), between August 2009 and July 2010, where were analyzed the following variables: pH, Na+ , K+ , Ca2+, Mg2+, NO3- , Cl- , SO4 2- , PO4 3- and SiO2. The results indicate that Ca2+ (6.65%) and NO3- (35%) are the most abundant ions that followed the trend: Ca2+ > Mg2+ > K+ > Na+ for cations and NO3 - > SO4 2- > Cland PO4 3- for anions. The phosphate fertilizers use, agricultural soils dust, lithology, biomass burning and fossil fuels can be the major contributing factors to explain the chemical composition of rainwater at Jaú River watershed, Dois Córregos city (SP).
Resumo:
This work evaluated the rainwater chemical composition and the annual atmospheric deposition in Sorocaba, (Sao Paulo State), Brazil. One sampling ˜ point was chosen and forty samples were collected between January and December 2006. The analyses were performed for pH, electrical conductivity, sodium, calcium, potassium, magnesium, sulphate, nitrate, phosphate, alkalinity and chloride. The rainwater pH varied from 5.20 to 6.40, being Ca2+ the main ion responsible for controlling the rainwater pH. The ionic concentration decreases in the following order: Ca2+>Na+> K+>Mg2+ for cations and SO2− 4 >HCO− 3 >NO− 3 >Cl−>PO3− 4 for anions. The annual atmospheric deposition appears to be controlled by the following sources: mining activities and cement factories (Ca2+ and HCO− 3 ), agricultural activities (K+, NO− 3 and PO3− 4 ), soil dust (Na+, Mg2+ and HCO− 3 ) and fossil fuel burning (SO2− 4 )
Resumo:
Due to the high incidence and prevalence of hypertension, especially in the elderly population, several studies have been developed to understand the relationship between etiological factors and blood pressure control. It has been demonstrated that hypertensive patients tend to present a status of hyperuricemia. This result suggested that there is a relationship between blood pressure and uric acid concentrations. However there is still a lack of studies that focus on this relationship, and especially how physical exercise could affect the relationship between both of them. Thus, the purpose of this study is to review and discuss the relationship between hypertension and uric acid concentration pointing the oxidative stress as the main factor of this relationship and discuss the physical exercise as the main preventive factor of high uric acid concentrations and oxidative stress. It has been described an increase in oxidative stress during the uric acid pathway because the high production of anions superoxide. This in turn, increases the activation of renin-angiotensin system and decreases nitric oxide bioavailability which will compromise the vasodilatation mechanism. However physical exercises have been associated with improvements in antioxidant capacity and nitric oxide production and bioavailability which will improve the blood pressure control.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Anionic surface-initiated polymerization of ethylene oxide and styrene has been performed using multiwalled carbon nanotubes (MWNTs) functionalized with anionic initiators. The surface of MWNTs was modified via covalent attachment of precursor anions such as 4-hydroxyethyl benzocyclobutene (BCBEO) and 1-benzocyclobutene-1′-phenylethylene (BCB-PE) through Diels-Alder cycloaddition at 235 °C. Surface-functionalized MWNTs-g-(BCB-EO) n and MWNTs-g-(BCB-PE) n with 23 and 54 wt % precursor initiators, respectively, were used for the polymerizations. Alkoxide anion on the surface of MWNTs-g-(BCB-EO) n was generated through reaction with potassium triphenylmethane for the polymerization of ethylene oxide in tetrahydrofuran and phenyl substituted alkyllithium was generated from the surface of MWNTs-g-(BCB-PE) n using sec-butyllithium for the polymerization of styrene in benzene. In both cases, the initiation was found to be very slow because of the heterogeneous reaction medium. However, the MWNTs gradually dispersed in the reaction medium during the polymerization. A pale green color was noticed in the case of ethylene oxide polymerization and the color of initiator as well as the propagating anions was not discernible visually in styrene polymerization. Polymer grafted nanocomposites, MWNTs-g-(BCB-PEO) n and MWNTs-g-(BCB-PS) n containing a very high percentage of hairy polymer with a small fraction of MWNTs (<1 wt %) were obtained. The conversion of ethylene oxide and the weight percent of PEO on the surface of the MWNTs increased with increasing reaction time indicating a controlled polymerization. The polymer-grafted MWNTs were characterized using FTIR, 1H NMR, Raman spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and transmission electron microscopy (TEM). Size exclusion chromatography of the polymer grafted MWNTs revealed broad molecular weight distributions (1.3 < Mw/Mn < 1.8) indicating the presence of different sizes of polymer nanocomposites. The TEM images showed the presence of thick layers of polymer up to 30 nm around the MWNTs. The living nature of the growing polystyryllithium was used to produce diblock copolymer grafts using sequential polymerization of isoprene on the surface of MWNTs.
Resumo:
Triglycerides are reacted in a liquid phase reaction with methanol and a homogeneous basic catalyst. The reaction yields a spatially separated two phase result with an upper located non-polar phase consisting principally of non-polar methyl esters and a lower located phase consisting principally of glycerol and residual methyl esters. The glycerol phase is passed through a strong cationic ion exchanger to remove anions, resulting in a neutral product which is flashed to remove methanol and which is reacted with isobutylene in the presence of a strong acid catalyst to produce glycerol ethers. The glycerol ethers are then added back to the upper located methyl ethyl ester phase to provide an improved biodiesel fuel.
Resumo:
Corrosion research in steels is one of the areas in which Mossbauer spectroscopy has become a required analytical technique, since it is a powerful tool for both identifying and quantifying distinctive phases (which contain Fe) with accuracy. In this manuscript, this technique was used to the study of corrosion resistance of plasma nitrided AISI 316L samples in the presence of chloride anions. Plasma nitriding has been carried out using dc glow-discharge, nitriding treatments, in medium of 80 vol.% H-2 and 20 vol.% N-2, at 673 K, and at different time intervals: 2, 4, and 7 h. Treated samples were characterized by means of phase composition and morphological analysis, and electrochemical tests in NaCl aerated solution in order to investigate the influence of treatment time on the microstructure and the corrosion resistance, proved by conversion electron Mossbauer spectroscopy (CEMS), glancing angle X-ray diffraction (GAXRD), scanning electron microscopy (SEM) and potentiodynamic polarization. A modified layer of about 8 gin was observed for all the nitrided samples, independently of the nitriding time. A metastable phase, S phase or gamma(N), was produced. It seems to be correlated with gamma`-Fe-4 N phase. If the gamma(N) fraction decreases, the gamma` fraction increases. The gamma(N) magnetic nature was analyzed. When the nitriding time increases, the results indicate that there is a significant reduction in the relative fraction of the magnetic gamma(N) (in) phase. In contrast, the paramagnetic gamma(N) (p) phase increases. The GAXRD analysis confirms the Mossbauer results, and it also indicates CrN traces for the sample nitrided for 7 h. Corrosion results demonstrate that time in the plasma nitriding treatment plays an important role for the corrosion resistance. The sample treated for 4 h showed the best result of corrosion resistance. It seems that the epsilon/gamma` fraction ratio plays an important role in thin corrosion resistance since this sample shows the maximum value for this ratio. (c) 2008 Published by Elsevier B.V.
Resumo:
Time correlation functions of current fluctuations were calculated by molecular dynamics (MD) simulations in order to investigate sound waves of high wavevectors in the glass-forming liquid Ca(NO3)(2)center dot 4H(2)O. Dispersion curves, omega(k), were obtained for longitudinal (LA) and transverse acoustic (TA) modes, and also for longitudinal optic (LO) modes. Spectra of LA modes calculated by MD simulations were modeled by a viscoelastic model within the memory function framework. The viscoelastic model is used to rationalize the change of slope taking place at k similar to 0.3 angstrom(-1) in the omega(k) curve of acoustic modes. For still larger wavevectors, mixing of acoustic and optic modes is observed. Partial time correlation functions of longitudinal mass currents were calculated separately for the ions and the water molecules. The wavevector dependence of excitation energies of the corresponding partial LA modes indicates the coexistence of a relatively stiff subsystem made of cations and anions, and a softer subsystem made of water molecules. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4751548]
Resumo:
A simple and scalable procedure was used to obtain thin, stable, homogeneous, and easy-to-handle films composed of silicone derived from dimethicones containing dispersed hydrotalcite-type materials previously organo-modified with amino acids. The absence of the typical X-ray pattern of the bioinorganic LDH filler suggested an exfoliation process that was further indirectly evidenced by a drastic change in the rheological behavior, which turned from a quasi-Newtonian behavior for the silicone free of LDH filler to an extensive developed gel-like structure for the nanocomposite derivatives. Visualized by the shear-thinning exponent of the complex viscosity in the low-frequency range, the percolation threshold was evident for filler loading as low as <5 w/W%, suggesting the presence of a largely developed interface between the filler and the polymer. The increase of more than one order of magnitude in viscosity was explained by the rather strong attrition phenomenon between the tethered amino acid anions and the silicone chains. UVB radiation absorption profiles make such bioinorganic polymer nanocomposites potentially applicable in skin protection. Thermo-gravimetric analysis revealed significant improvement in the thermal stability, especially in the final step of the polymer combustion, thus underlining the role of the hybrid material as a thermal retardant agent. (C) 2011 Elsevier B.V. All rights reserved.