965 resultados para AMS(14)C dating


Relevância:

30.00% 30.00%

Publicador:

Resumo:

LA-MC-ICP-MS U-Pb zircon dating was performed on syntectonic, early post-collisional granitic and associated mafic rocks that are intrusive in the Brusque Metamorphic Complex and in the Florianopolis Batholith, major tectonic domains separated by the Neoproterozoic Major Gercino Shear Zone (MGSZ) in south Brazil. The inferred ages of magmatic crystallization are consistent with field relationships, and show that the syntectonic granites from both domains are similar, with ages around 630-620 Ma for high-K calc-alkaline metaluminous granites and ca. 610 Ma for slightly peraluminous granites. Although ca. 650 Ma inherited zircon components are identified in granites from both domains, important contrasts on the crustal architecture in each domain are revealed by the patterns of zircon inheritance, indicating different crustal sources for the granites in each domain. The granites from the southern domain (Floriandpolis Batholith) have essentially Neoproterozoic (650-700 Ma and 900-950 Ma) inheritance; with a single 2.0-2.2 Ga inherited age obtained in the peraluminous Mariscal Granite. In the northern Brusque Metamorphic Complex, the metaluminous Rio Pequeno Granite and associated mafic rocks have scarce inherited cores with ages around 1.65 Ga, whereas the slightly peraluminous Serra dos Macacos Granite has abundant Paleoproterozoic (1.8-2.2 Ga) and Archean (2.9-3.4 Ga) inherited zircons. Our results are consistent with the hypothesis that the MGSZ separates domains with distinct geologic evolution; however, the contemporaneity of 630-610 Ma granitic magmatism with similar structural and geochemical patterns on both sides of this major shear zone indicates that these domains were already part of a single continental mass at 630 Ma, reinforcing the post-collisional character of these granites. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The C-13(O-18,O-16)C-15 reaction has been studied at 84 MeV incident energy. The ejectiles have been detected at forward angles and C-15 excitation energy spectra have been obtained up to about 20 MeV. Several known bound and resonant states of C-15 have been identified together with two unknown structures at 10.5 MeV (FWHM = 2.5 MeV) and 13.6 MeV (FWHM = 2.5 MeV). Calculations based Oil the removal of two uncorrelated neutrons from the projectile describe a significant part of the continuum observed in the energy spectra. In particular the structure at 10.5 MeV is dominated by a resonance of C-15 near the C-13 + n + n threshold. Similar structures are found in nearby nuclei such as C-14 and Be-11. (c) 2012 Elsevier BM. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytochemical studies of the leaves and stem have led to the identification of the known acridone alkaloids arborinine, methyl-arborinine, 1-hydroxy-3-methoxy-N-methyl acridone, xanthoxoline, 1,2,3,5-tetramethoxy-N-methylacridone, toddaliopsin C and the new seco acridone alkaloid inopinatin. The known quinoline alkaloids 2-phenyl-1-methyl-quinolin-4(1H)-one, 2-phenyl-1-methyl-7-methoxy-quinolin-4(1H)-one, dictamnine, and the coumarins scopoletin and marmesin were also isolated. The isolated compounds and the distribution of secondary metabolites, which are systematically important, obtained from literature, clearly confirmed that some species formerly described in the genera Angostura and Galipea in fact shall belong to the genus Conchocarpus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excursión de divulgación geológica en Gran Canaria con motivo del Día de la Madre Tierra

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A regional envelope curve (REC) of flood flows summarises the current bound on our experience of extreme floods in a region. RECs are available for most regions of the world. Recent scientific papers introduced a probabilistic interpretation of these curves and formulated an empirical estimator of the recurrence interval T associated with a REC, which, in principle, enables us to use RECs for design purposes in ungauged basins. The main aim of this work is twofold. First, it extends the REC concept to extreme rainstorm events by introducing the Depth-Duration Envelope Curves (DDEC), which are defined as the regional upper bound on all the record rainfall depths at present for various rainfall duration. Second, it adapts the probabilistic interpretation proposed for RECs to DDECs and it assesses the suitability of these curves for estimating the T-year rainfall event associated with a given duration and large T values. Probabilistic DDECs are complementary to regional frequency analysis of rainstorms and their utilization in combination with a suitable rainfall-runoff model can provide useful indications on the magnitude of extreme floods for gauged and ungauged basins. The study focuses on two different national datasets, the peak over threshold (POT) series of rainfall depths with duration 30 min., 1, 3, 9 and 24 hrs. obtained for 700 Austrian raingauges and the Annual Maximum Series (AMS) of rainfall depths with duration spanning from 5 min. to 24 hrs. collected at 220 raingauges located in northern-central Italy. The estimation of the recurrence interval of DDEC requires the quantification of the equivalent number of independent data which, in turn, is a function of the cross-correlation among sequences. While the quantification and modelling of intersite dependence is a straightforward task for AMS series, it may be cumbersome for POT series. This paper proposes a possible approach to address this problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Programa de doctorado: Sanidad y patología animal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multidisciplinary study was carried out on the Late Quaternary-Holocene subsurface deposits of two Mediterranean coastal areas: Arno coastal plain (Northern Tyrrhenian Sea) and Modern Po Delta (Northern Adriatic Sea). Detailed facies analyses, including sedimentological and micropalaeontological (benthic foraminifers and ostracods) investigations, were performed on nine continuously-cored boreholes of variable depth (ca. from 30 meters to100 meters). Six cores were located in the Arno coastal plain and three cores in the Modern Po Delta. To provide an accurate chronological framework, twenty-four organic-rich samples were collected along the fossil successions for radiocarbon dating (AMS 14C). In order to reconstruct the depositional and palaeoenvironmental evolution of the study areas, core data were combined with selected well logs, provided by local companies, along several stratigraphic sections. These sections revealed the presence of a transgressive-regressive (T-R) sequence, composing of continental, coastal and shallow-marine deposits dated to the Late Pleistocene-Holocene period, beneath the Arno coastal plain and the Modern Po Delta. Above the alluvial deposits attributed to the last glacial period, the post-glacial transgressive succession (TST) consists of back-barrier, transgressive barrier and inner shelf deposits. Peak of transgression (MFS) took place around the Late-Middle Holocene transition and was identified by subtle micropalaeontological indicators within undifferentiated fine-grained deposits. Upward a thick prograding succession (HST) records the turnaround to regressive conditions that led to a rapid delta progradation in both study areas. Particularly, the outbuilding of modern-age Po Delta coincides with mud-belt formation during the late HST (ca. 600 cal yr BP), as evidenced by a fossil microfauna similar to the foraminiferal assemblage observed in the present Northern Adriatic mud-belt. A complex interaction between allocyclic and autocyclic factors controlled facies evolution during the highstand period. The presence of local parameters and the absence of a predominant factor prevent from discerning or quantifying consequences of the complex relationships between climate and deltaic evolution. On the contrary transgressive sedimentation seems to be mainly controlled by two allocyclic key factors, sea-level rise and climate variability, that minimized the effects of local parameters on coastal palaeoenvironments. TST depositional architecture recorded in both study areas reflects a well-known millennial-scale variability of sea-level rising trend and climate during the Late glacial-Holocene period. Repeated phases of backswamp development and infilling by crevasse processes (parasequences) were recorded in the subsurface of Modern Po Delta during the early stages of transgression (ca. 11,000-9,500 cal yr BP). In the Arno coastal plain the presence of a deep-incised valley system, probably formed at OSI 3/2 transition, led to the development of a thick (ca. 35-40 m) transgressive succession composed of coastal plain, bay-head delta and estuarine deposits dated to the Last glacial-Early Holocene period. Within the transgressive valley fill sequence, high-resolution facies analyses allowed the identification and lateral tracing of three parasequences of millennial duration. The parasequences, ca. 8-12 meters thick, are bounded by flooding surfaces and show a typical internal shallowing-upward trend evidenced by subtle micropalaeontological investigations. The vertical stacking pattern of parasequences shows a close affinity with the step-like sea-level rising trend occurred between 14,000-8,000 cal years BP. Episodes of rapid sea-level rise and subsequent stillstand phases were paralleled by changes in climatic conditions, as suggested by pollen analyses performed on a core drilled in the proximal section of the Arno palaeovalley (pollen analyses performed by Dr. Marianna Ricci Lucchi). Rapid shifts to warmer climate conditions accompanied episodes of rapid sea-level rise, in contrast stillstand phases occurred during temporary colder climate conditions. For the first time the palaeoclimatic signature of high frequency depositional cycles is clearly documented. Moreover, two of the three "regressive" pulsations, recorded at the top of parasequences by episodes of partial estuary infilling in the proximal and central portions of Arno palaeovalley, may be correlated with the most important cold events of the post-glacial period: Younger Dryas and 8,200 cal yr BP event. The stratigraphic and palaeoclimatic data of Arno coastal plain and Po Delta were compared with those reported for the most important deltaic and coastal systems in the worldwide literature. The depositional architecture of transgressive successions reflects the strong influence of millennial-scale eustatic and climatic variability on worldwide coastal sedimentation during the Late glacial-Holocene period (ca. 14,000-7,000 cal yr BP). The most complete and accurate record of high-frequency eustatic and climatic events are usually found within the transgressive succession of very high accommodation settings, such as incised-valley systems where exceptionally thick packages of Late glacial-Early Holocene deposits are preserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INDICE INTRODUZIONE 1 1. DESCRIZIONE DEL SISTEMA COSTRUTTIVO 5 1.1 I pannelli modulari 5 1.2 Le pareti tozze in cemento armato gettate in opera realizzate con la tecnologia del pannello di supporto in polistirene 5 1.3 La connessione tra le pareti e la fondazione 6 1.4 Le connessioni tra pareti ortogonali 7 1.5 Le connessioni tra pareti e solai 7 1.6 Il sistema strutturale così ottenuto e le sue caratteristiche salienti 8 2. RICERCA BIBLIOGRAFICA 11 2.1 Pareti tozze e pareti snelle 11 2.2 Il comportamento scatolare 13 2.3 I muri sandwich 14 2.4 Il “ferro-cemento” 15 3. DATI DI PARTENZA 19 3.1 Schema geometrico - architettonico definitivo 19 3.2 Abaco delle sezioni e delle armature 21 3.3 Materiali e resistenze 22 3.4 Valutazione del momento di inerzia delle pareti estese debolmente armate 23 3.4.1 Generalità 23 3.4.2 Caratteristiche degli elementi provati 23 3.4.3 Formulazioni analitiche 23 3.4.4 Considerazioni sulla deformabilità dei pannelli debolmente armati 24 3.4.5 Confronto tra rigidezze sperimentali e rigidezze valutate analiticamente 26 3.4.6 Stima di un modulo elastico equivalente 26 4. ANALISI DEI CARICHI 29 4.1 Stima dei carichi di progetto della struttura 29 4.1.1 Stima dei pesi di piano 30 4.1.2 Tabella riassuntiva dei pesi di piano 31 4.2 Analisi dei carichi da applicare in fase di prova 32 4.2.1 Pesi di piano 34 4.2.2 Tabella riassuntiva dei pesi di piano 35 4.3 Pesi della struttura 36 4.3.1 Ripartizione del carico sulle pareti parallele e ortogonali 36 5. DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI 37 5.1 Caratteristiche di modellazione 37 5.2 Caratteristiche geometriche del modello 38 5.3 Analisi dei carichi 41 5.4 Modello con shell costituite da un solo layer 43 5.4.1 Modellazione dei solai 43 5.4.2 Modellazione delle pareti 44 5.4.3 Descrizione delle caratteristiche dei materiali 46 5.4.3.1 Comportamento lineare dei materiali 46 6. ANALISI DEL COMPORTAMENTO STATICO DELLA STRUTTURA 49 6.1 Azioni statiche 49 6.2 Analisi statica 49 7. ANALISI DEL COMPORTAMENTO DINAMICO DELLA STRUTTURA 51 7.1 Determinazione del periodo proprio della struttura con il modello FEM 51 7.1.1 Modi di vibrare corrispondenti al modello con solai e pareti costituiti da elementi shell 51 7.1.1.1 Modi di vibrare con modulo pari a E 51 7.1.1.2 Modi di vibrare con modulo pari a 0,5E 51 7.1.1.3 Modi di vibrare con modulo pari a 0,1E 51 7.1.2 Modi di vibrare corrispondenti al modello con solai infinitamente rigidi e pareti costituite da elementi shell 52 7.1.2.1 Modi di vibrare con modulo pari a E 52 7.1.2.2 Modi di vibrare con modulo pari a 0,5E 52 7.1.2.3 Modi di vibrare con modulo pari a 0,1E: 52 7.1.3 Modi di vibrare corrispondenti al modello con solai irrigiditi con bielle e pareti costituite da elementi shell 53 7.1.3.1 Modi di vibrare con modulo pari a E 53 7.1.3.2 Modi di vibrare con modulo pari a 0,5E 53 7.1.3.3 Modi di vibrare con modulo pari a 0,1E 53 7.2 Calcolo del periodo proprio della struttura assimilandola ad un oscillatore semplice 59 7.2.1 Analisi svolta assumendo l’azione del sisma in ingresso in direzione X-X 59 7.2.1.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 59 7.2.1.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 59 7.2.1.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 61 7.2.1.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 63 7.2.1.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 66 7.2.1.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 69 7.2.1.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 69 7.2.1.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 71 7.2.1.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 73 7.2.1.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 76 7.2.1.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 79 7.2.1.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 79 7.2.1.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 81 7.2.1.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 83 7.2.1.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 86 7.2.2 Analisi svolta assumendo l’azione del sisma in ingresso in direzione Y-Y 89 7.2.2.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 89 7.2.2.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 89 7.2.2.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 91 7.2.2.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 93 7.2.2.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 98 7.2.2.1.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 103 7.2.2.1.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 105 7.2.2.1.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 107 7.2.2.1.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 112 7.2.2.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 117 7.2.2.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 117 7.2.2.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 119 7.2.2.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 121 7.2.2.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 126 7.2.2.2.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5 E 131 7.2.2.2.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 133 7.2.2.2.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 135 7.2.2.2.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 140 7.2.2.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 145 7.2.2.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 145 7.2.2.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 147 7.2.2.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 149 7.2.2.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 154 7.2.2.3.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1 E 159 7.2.2.3.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 161 7.2.2.3.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 163 7.2.2.3.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 168 7.3 Calcolo del periodo proprio della struttura approssimato utilizzando espressioni analitiche 174 7.3.1 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente un peso P gravante all’estremo libero 174 7.3.1.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 174 7.3.1.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 177 7.3.1.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 179 7.3.2 Approssimazione della struttura ad una mensola incastrata alla base, di peso Q=ql, avente un peso P gravante all’estremo libero e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 181 7.3.2.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 181 7.3.2.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 186 7.3.3 Approssimazione della struttura ad un portale avente peso Qp = peso di un piedritto, Qt=peso del traverso e un peso P gravante sul traverso medesimo 191 7.3.3.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 191 7.3.3.2 Applicazione allo specifico caso di studio in esame con modulo ellastico E=300000 kg/cm2 192 7.3.3.3 Applicazione allo specifico caso di studio in esame con modulo ellastico E=30000 kg/cm2 194 7.3.4 Approssimazione della struttura ad un portale di peso Qp = peso di un piedritto, Qt=peso del traverso e avente un peso P gravante sul traverso medesimo e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 196 7.3.4.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 196 7.3.4.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 201 7.3.5 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente le masse m1,m2....mn concentrate nei punti 1,2….n 206 7.3.5.1 Riferimenti teorici: metodo approssimato 206 7.3.5.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 207 7.3.5.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 209 7.3.6 Approssimazione della struttura ad un telaio deformabile con tavi infinitamente rigide 211 7.3.6.1 Riferimenti teorici: vibrazioni dei telai 211 7.3.6.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 212 7.3.6.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 215 7.3.7 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente masse m1,m2....mn concentrate nei punti 1,2….n e studiata come un sistema continuo 218 7.3.7.1 Riferimenti teorici: metodo energetico; Masse ripartite e concentrate; Formula di Dunkerley 218 7.3.7.1.1 Il metodo energetico 218 7.3.7.1.2 Masse ripartite e concentrate. Formula di Dunkerley 219 7.3.7.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 221 7.3.7.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 226 7.4 Calcolo del periodo della struttura approssimato mediante telaio equivalente 232 7.4.1 Dati geometrici relativi al telaio equivalente e determinazione dei carichi agenti su di esso 232 7.4.1.1 Determinazione del periodo proprio della struttura assumendo diversi valori del modulo elastico E 233 7.5 Conclusioni 234 7.5.1 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura ad un grado di libertà 234 7.5.2 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura a più gradi di libertà e a sistema continuo 236 8. ANALISI DEL COMPORTAMENTO SISMICO DELLA STRUTTURA 239 8.1 Modello con shell costituite da un solo layer 239 8.1.1 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,1g 239 8.1.1.1 Generalità 239 8.1.1.2 Sollecitazioni e tensioni sulla sezione di base 242 8.1.1.2.1 Combinazione di carico ”Carichi verticali più Spettro di Risposta scalato ad un valore di PGA pari a 0,1g” 242 8.1.1.2.2 Combinazione di carico ”Spettro di Risposta scalato ad un valore di 0,1g di PGA” 245 8.1.1.3 Spostamenti di piano 248 8.1.1.4 Accelerazioni di piano 248 8.1.2 Analisi Time-History lineare con accelerogramma caratterizzato da un valore di PGA pari a 0,1g 249 8.1.2.1 Generalità 249 8.1.2.2 Sollecitazioni e tensioni sulla sezione di base 251 8.1.2.2.1 Combinazione di carico ” Carichi verticali più Accelerogramma agente in direzione Ye avente una PGA pari a 0,1g” 251 8.1.2.2.2 Combinazione di carico ” Accelerogramma agente in direzione Y avente un valore di PGA pari a 0,1g ” 254 8.1.2.3 Spostamenti di piano assoluti 257 8.1.2.4 Spostamenti di piano relativi 260 8.1.2.5 Accelerazioni di piano assolute 262 8.1.3 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,3g 264 8.1.3.1 Generalità 264 8.1.3.2 Sollecitazioni e tensioni sulla sezione di base 265 8.1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurde die Synthese von optisch aktivem 9,14-Methylen-Lipoxin A4 untersucht. Lipoxin A4 und seine Derivate leiten sich von der Arachidonsäurekaskade ab wie die Prostaglandine, Prostacycline, Thromboxana und Leucotriene. Alle diese Verbindungen sind biologisch aktive Eicosanoide, die aus 20 C-Atomen bestehen. Lipoxine können im Organismus auf verschiedenen Biosynthesewegen entstehen: über die Lipoxygenase sowie über die Zell-Zell-Wechselwirkungen. Untersuchungen ergaben, dass die Lipoxine selektive biologische Wirkungen zeigen, die eine wichtige Rolle vor allem in Entzündungsprozessen und Infektabwehr zeigen. Da aber diese Moleküle rasch isomerisieren, sind diese hohen Aktivitäten mit einer sehr geringen Stabilität gekoppelt. Aufgrund dieser Instabilität konnte die biologisch aktive Konformation des Lipoxin A4 am Rezeptor nicht eindeutig bestimmt werden. Zur besseren Untersuchung der Lipoxinrezeptor-Anordnung wurden deshalb stabile Analoga synthetisiert. Die biologische Aktivität des nach Nokami et al hergestellten Lipoxin A4-Analogons weicht sehr stark von der des Lipoxins ab. Angeregt durch diese Arbeiten wurde in der Arbeitsgruppe Nubbemeyer die Idee entwickelt, das konjugierte Tetraensystem des Lipoxin A4-Moleküls durch das Cycloheptatrien nachzuahmen. Die CH2-Gruppe bildet eine Brücke, die die Isomerisierung vom aktiven cis-Isomer zu den inaktiven trans-Isomeren verhindern soll. Mit diesem Cycloheptatriengerüst als Lipoxin A4-Analogon hoffen wir das Lipoxingerüst unwesentlich zu verändern und die damit verbundene biologische Aktivität zu erhalten. Die Synthese des 9,14-Methylen-LXA4 soll möglichst konvergent erfolgen, so dass gegebenenfalls auf Bausteine zurückgegriffen werden kann, deren Aufbau bereits optimiert wurde. Eine derartige Strategie ermöglicht darüber hinaus die Herstellung einer großen Zahl von weiteren potentiell interessanten Verbindungen ohne komplettes Umstellen der Synthese. Wichtige Reaktionen im Verlauf dieser Synthese sind: bei der Synthese des C8-C20-Bausteins: Friedel-Crafts-Acylierungen, Haloform-Reaktion, Veresterung mittels Standardmethoden, enantioselektive Reduktion mit dem chiralen CBS-Katalysator und Schutzgruppenoperation. bei der Synthese des C1-C7-Bausteins: ex-chiral-pool-Synthese aus 2-Desoxy-D-ribose, Wittig-Reaktion, Hydrierung mit Pd/C, Schutzgruppenoperation, Abspaltung von Schutzgruppen und Swern-Oxidation zum Aldehyd. Die Schlüsselreaktion der ganzen Synthese ist die Eintopf-Variante der Julia-Olefinierung nach Kocienski: selektiver Aufbau des trans-Olefins durch Verknüpfung der beiden Bausteine. Nach weiteren Schutzgruppenoperationen (und Öffnung des Valerolactons) wird der Methylester des 9,14-Lipoxin A4 erhalten, dessen biologische Aktivität zweifelsfrei bewiesen wurde.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proton-nucleus elastic scattering at intermediate energies is a well-established method for the investigation of the nuclear matter distribution in stable nuclei and was recently applied also for the investigation of radioactive nuclei using the method of inverse kinematics. In the current experiment, the differential cross sections for proton elastic scattering on the isotopes $^{7,9,10,11,12,14}$Be and $^8$B were measured. The experiment was performed using the fragment separator at GSI, Darmstadt to produce the radioactive beams. The main part of the experimental setup was the time projection ionization chamber IKAR which was simultaneously used as hydrogen target and a detector for the recoil protons. Auxiliary detectors for projectile tracking and isotope identification were also installed. As results from the experiment, the absolute differential cross sections d$sigma$/d$t$ as a function of the four momentum transfer $t$ were obtained. In this work the differential cross sections for elastic p-$^{12}$Be, p-$^{14}$Be and p-$^{8}$B scattering at low $t$ ($t leq$~0.05~(GeV/c)$^2$) are presented. The measured cross sections were analyzed within the Glauber multiple-scattering theory using different density parameterizations, and the nuclear matter density distributions and radii of the investigated isotopes were determined. The analysis of the differential cross section for the isotope $^{14}$Be shows that a good description of the experimental data is obtained when density distributions consisting of separate core and halo components are used. The determined {it rms} matter radius is $3.11 pm 0.04 pm 0.13$~fm. In the case of the $^{12}$Be nucleus the results showed an extended matter distribution as well. For this nucleus a matter radius of $2.82 pm 0.03 pm 0.12$~fm was determined. An interesting result is that the free $^{12}$Be nucleus behaves differently from the core of $^{14}$Be and is much more extended than it. The data were also compared with theoretical densities calculated within the FMD and the few-body models. In the case of $^{14}$Be, the calculated cross sections describe the experimental data well while, in the case of $^{12}$Be there are discrepancies in the region of high momentum transfer. Preliminary experimental results for the isotope $^8$B are also presented. An extended matter distribution was obtained (though much more compact as compared to the neutron halos). A proton halo structure was observed for the first time with the proton elastic scattering method. The deduced matter radius is $2.60pm 0.02pm 0.26$~fm. The data were compared with microscopic calculations in the frame of the FMD model and reasonable agreement was observed. The results obtained in the present analysis are in most cases consistent with the previous experimental studies of the same isotopes with different experimental methods (total interaction and reaction cross section measurements, momentum distribution measurements). For future investigation of the structure of exotic nuclei a universal detector system EXL is being developed. It will be installed at the NESR at the future FAIR facility where higher intensity beams of radioactive ions are expected. The usage of storage ring techniques provides high luminosity and low background experimental conditions. Results from the feasibility studies of the EXL detector setup, performed at the present ESR storage ring, are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’insorgenza di fenomeni coinvolti nello sviluppo della farmacoresistenza costituisce al momento la principale causa di mancata risposta al trattamento chemioterapico nell’osteosarcoma. Questo è in parte dovuto ad una sovraespressione di diversi trasportatori ABC nelle cellule tumorali che causano un aumento dell’efflusso extracellulare del chemioterapico e pertanto una ridotta risposta al trattamento farmacologico. L'oncogene C-MYC è coinvolto nella resistenza al metothrexate, alla doxorubicina e al cisplatino ed è un fattore prognostico avverso, se sovraespresso al momento della diagnosi, in pazienti affetti da osteosarcoma. C-MYC è in grado di regolare l'espressione di diversi trasportatori ABC, probabilmente coinvolti nella resistenza ai farmaci nell’osteosarcoma, e questo potrebbe spiegare l’impatto prognostico avverso dell’oncogene in questo tumore. L’espressione genica di C-MYC e di 16 trasportatori ABC, regolati da C-MYC e / o responsabili dell'efflusso di diversi chemioterapici, è stata valutata su due diverse casistiche cliniche e su un pannello di linee cellulari di osteosarcoma umano mediante real-time PCR. L'espressione della proteina è stata valutata per i 9 trasportatori ABC risultati più rilevanti.Infine l'efficacia in vitro di un inibitore, specifico per ABCB1 e ABCC1, è stata valutata su linee cellulari di osteosarcoma. ABCB1 e ABCC1 sono i trasportatori più espressi nelle linee cellulari di osteosarcoma. ABCB1 è sovraespresso al momento della diagnosi in circa il 40-45% dei pazienti affetti da osteosarcoma e si conferma essere un fattore prognostico avverso se sovraespresso al momento della diagnosi. Pertanto ABCB1 diventa il bersaglio di elezione per lo sviluppo di strategie terapeutiche alternative, nel trattamento dell’osteosarcoma, atte al superamento della farmacoresistenza. L’inibizione dell'attività di tale trasportatore causa un aumento della sensibilità al trattamento chemioterapico nelle linee cellulari di osteosarcoma farmacoresistenti, indicando questo approccio come una possibile strategia per superare il problema della mancata risposta al trattamento farmacologico nei pazienti con osteosarcoma che sovraesprimono ABCB1.