931 resultados para AIRWAY INFLAMMATION
Resumo:
High-frequency respiratory impedance data measured noninvasively by the high-speed interrupter technique (HIT), particularly the first antiresonance frequency (f(ar,1)), is related to airway wall mechanics. The aim of this study was to evaluate the feasibility and repeatability of HIT in unsedated pre-term infants, and to compare values of f(ar,1) from 18 pre-term (post-conceptional age 32-37 weeks, weight 1,730-2,910 g) and 18 full-term infants (42-47 weeks, 3,920-5,340 g). Among the pre-term infants, there was good short-term repeatability of f(ar,1) within a single sleep epoch (mean (sd) coefficient of variance: 8 (1.7)%), but 95% limits of agreement for repeated measures of f(ar,1) after 3-8 h were relatively wide (-41 Hz; 37 Hz). f(ar,1) was significantly lower in pre-term infants (199 versus 257 Hz), indicating that wave propagation characteristics in pre-term airways are different from those of full-term infants. The present authors suggest that this is consistent with developmental differences in airway wall structure and compliance, including the influence of the surrounding tissue. Since flow limitation is determined by wave propagation velocity and airway cross-sectional area, it was hypothesised that the physical ability of the airways to carry large flows is fundamentally different in pre-term than in full-term infants.
Resumo:
An implant-abutment interface at the alveolar bone crest is associated with sustained peri-implant inflammation; however, whether magnitude of inflammation is proportionally dependent upon interface position remains unknown. This study compared the distribution and density of inflammatory cells surrounding implants with a supracrestal, crestal, or subcrestal implant-abutment interface. All implants developed a similar pattern of peri-implant inflammation: neutrophilic polymorphonuclear leukocytes (neutrophils) maximally accumulated at or immediately coronal to the interface. However, peri-implant neutrophil accrual increased progressively as the implant-abutment interface depth increased, i.e., subcrestal interfaces promoted a significantly greater maximum density of neutrophils than did supracrestal interfaces (10,512 +/- 691 vs. 2398 +/- 1077 neutrophils/mm(2)). Moreover, inflammatory cell accumulation below the original bone crest was significantly correlated with bone loss. Thus, the implant-abutment interface dictates the intensity and location of peri-implant inflammatory cell accumulation, a potential contributing component in the extent of implant-associated alveolar bone loss.
Resumo:
Objectives: The aims of the present study were (1)to assess the microbiota at implants in function diagnosed as having either peri-implantitis, or mucositis, or being clinically without symptoms of inflammation, (2) to identify explanatory factors to implant status. Material and Methods: Clinical and microbiological data were collected from 138 subjects (mean age: 62.3 ± 14.9) with 524 implants in function for an average of 10.8 years (S.D. +1.5). The checkerboard DNA-DNA hybridization method was used to identify 40 bacterial species. Results: Subjects had poor oral hygiene with a mean % plaque score 53.2 ± 24.4. In 36% of cases periodontitis was reported as the cause for implant therapy. Mucositis was diagnosed in 61.6% and per-implantitis in 15.9% of all cases. Edentulous subjects had at implants with peri-implantitis significantly higher bacterial loads for Streptococcus sanguis (p<0.01), Fusobacterium nucleatum sp. nucleatum (p<0.02), and Leptothrichia buccalis (p<0.05) than did dentate implant subjects. Dentate subjects had higher bacterial loads of Porphyromonas gingivalis (p<0.02). The levels of Fusobacterium nucleatum sp.vincentii and Capnocytophaga ochracea were explanatory to mucositis. Only a history of periodontitis as cause of tooth loss and smoking were explanatory to peri-implantitis. The microbiota was not affect by supportive care patterns. Conclusions: Presence or absence of teeth partly explains the implant microbiota. A past history of periodontitis and smoking are associated with peri-implantitis. The microbiota at implants with mucositis, or peri-implantitis is similar to that of teeth. Supportive periodontal and implant therapy fails to have an impact on implant microbiota and does not prevent mucositis and peri-implantitis.
Resumo:
BACKGROUND: Environment and genetics influence the manifestation of recurrent airway obstruction (RAO), but the associations of specific factors with mild, moderate, and severe clinical signs are unknown. HYPOTHESIS: We hypothesized that sire, feed, bedding, time outdoors, sex, and age are associated with clinical manifestations of mild, moderate, and severe lower airway disease. ANIMALS: Direct offspring of 2 RAO-affected Warmblood stallions (F1S1, n = 172; F1S2, n = 135); maternal half-siblings of F1S1 (mHSS1, n = 66); and an age-matched, randomly chosen control group (CG, n = 33). METHODS: A standardized questionnaire was used to assess potential risk factors and to establish a horse owner assessed respiratory signs index (HOARSI 1-4, from healthy to severe) according to clinical signs of lower airway disease. RESULTS: More F1S1 and F1S2 horses showed moderate to severe clinical signs (HOARSI 3 and HOARSI 4 combined, 29.6 and 27.3%, respectively) compared with CG and mHSS1 horses (9.1 and 6.2%, respectively; contingency table overall test, P < .001). Sire, hay feeding, and age (in decreasing order of strength) were associated with more severe clinical signs (higher HOARSI), more frequent coughing, and nasal discharge. CONCLUSIONS AND CLINICAL RELEVANCE: There is a genetic predisposition and lesser but also marked effects of hay feeding and age on the manifestation of moderate to severe clinical signs, most markedly on coughing frequency. In contrast, mild clinical signs were not associated with sire or hay feeding in our populations.
Resumo:
REASONS FOR STUDY: Equine recurrent airway obstruction (RAO) is probably dependent on a complex interaction of genetic and environmental factors and shares many characteristic features with human asthma. Interleukin 4 receptor a chain (IL4RA) is a candidate gene because of its role in the development of human asthma, confirmation of this association is therefore required. METHODS: The equine BAC clone containing the IL4RA gene was localised to ECA13q13 by the FISH method. Microsatellite markers in this region were investigated for possible association and linkage with RAO in 2 large Warmblood halfsib families. Based on a history of clinical signs (coughing, nasal discharge, abnormal breathing and poor performance), horses were classified in a horse owner assessed respiratory signs index (HOARSI 1-4: from healthy, mild, moderate to severe signs). Four microsatellite markers (AHT133, LEX041, VHL47, ASB037) were analysed in the offspring of Sire 1 (48 unaffected HOARSI 1 vs. 59 affected HOARSI 2-4) and Sire 2 (35 HOARSI 1 vs. 50 HOARSI 2-4), age 07 years. RESULTS: For both sires haplotypes could be established in the order AHT133-LEXO47-VHL47-ASB37. The distances in this order were estimated to be 2.9, 0.9 and 2.3 centiMorgans, respectively. Haplotype association with mild to severe clinical signs of chronic lower airway disease (HOARSI 2-4) was significant in the offspring of Sire 1 (P = 0.026) but not significant for the offspring of Sire 2 (P = 0.32). Linkage analysis showed the ECA13q13 region containing IL4RA to be linked to equine chronic lower airway disease in one family (P<0.01), but not in the second family. CONCLUSIONS: This supports a genetic background for equine RAO and indicates that IL4RA is a candidate gene with possible locus heterogeneity for this disease. POTENTIAL RELEVANCE: Identification of major genes for RAO may provide a basis for breeding and individual prevention for this important disease.
Magnetic resonance imaging features of orbital inflammation with intracranial extension in four dogs
Resumo:
This retrospective study describes the clinical and magnetic resonance (MR) imaging features of chronic orbital inflammation with intracranial extension in four dogs (two Dachshunds, one Labrador, one Swiss Mountain). Intracranial extension was observed through the optic canal (n=1), the orbital fissure (n=4), and the alar canal (n=1). On T1-weighted images structures within the affected skull foramina could not be clearly differentiated, but were all collectively isointense to hypointense compared with the contralateral, unaffected side, or compared with gray matter. On T2-, short tau inversion recovery (STIR)-, or fluid-attenuated inversion recovery (FLAIR)-weighted images structures within the affected skull foramina appeared hyperintense compared with gray matter, and extended with increased signal into the rostral cranial fossa (n=1) and middle cranial fossa (n=4). Contrast enhancement at the level of the affected skul foramina as well as at the skull base in continuity with the orbital fissure was observed in all patients. Brain edema or definite meningeal enhancement could not be observed, but a close anatomic relationship of the abnormal tissue to the cavernous sinus was seen in two patients. Diagnosis was confirmed in three dogs (one cytology, two biopsy, one necropsy) and was presumptive in one based on clinical improvement after treatment. This study is limited by its small sample size, but provides evidence for a potential risk of intracranial extension of chronic orbital inflammation. This condition can be identified best by abnormal signal increase at the orbital fissure on transverse T2-weighted images, on dorsal STIR images, or on postcontrast transverse or dorsal images.
Resumo:
Triggering receptor expressed on myeloid cells-1 (TREM-1) potently amplifies acute inflammatory responses by enhancing degranulation and secretion of proinflammatory mediators. Here we demonstrate that TREM-1 is also crucially involved in chronic inflammatory bowel diseases (IBD). Myeloid cells of the normal intestine generally lack TREM-1 expression. In experimental mouse models of colitis and in patients with IBD, however, TREM-1 expression in the intestine was upregulated and correlated with disease activity. TREM-1 significantly enhanced the secretion of relevant proinflammatory mediators in intestinal macrophages from IBD patients. Blocking TREM-1 by the administration of an antagonistic peptide substantially attenuated clinical course and histopathological alterations in experimental mouse models of colitis. This effect was also seen when the antagonistic peptide was administered only after the first appearance of clinical signs of colitis. Hence, TREM-1-mediated amplification of inflammation contributes not only to the exacerbation of acute inflammatory disorders but also to the perpetuation of chronic inflammatory disorders. Furthermore, interfering with TREM-1 engagement leads to the simultaneous reduction of production and secretion of a variety of pro-inflammatory mediators such as TNF, IL-6, IL-8 (CXCL8), MCP-1 (CCL2), and IL-1beta. Therefore, TREM-1 may also represent an attractive target for the treatment of chronic inflammatory disorders.
Resumo:
In the resolution of inflammatory responses, neutrophils rapidly undergo apoptosis. We describe a new proapoptotic pathway in which cathepsin D directly activates caspase-8. Cathepsin D is released from azurophilic granules in neutrophils in a caspase-independent but reactive oxygen species-dependent manner. Under inflammatory conditions, the translocation of cathepsin D in the cytosol is blocked. Pharmacological or genetic inhibition of cathepsin D resulted in delayed caspase activation and reduced neutrophil apoptosis. Cathepsin D deficiency or lack of its translocation in the cytosol prolongs innate immune responses in experimental bacterial infection and in septic shock. Thus, we identified a new function of azurophilic granules that is in addition to their role in bacterial defense mechanisms: to regulate the life span of neutrophils and, therefore, the duration of innate immune responses through the release of cathepsin D.
Resumo:
IL-15 has recently been shown to induce the differentiation of functional dendritic cells (DCs) from human peripheral blood monocytes. Since DCs lay in close proximity to epithelial cells in the airway mucosa, we investigated whether airway epithelial cells release IL-15 in response to inflammatory stimuli and thereby induce differentiation and maturation of DCs. Alveolar (A549) and bronchial (BEAS-2B) epithelial cells produced IL-15 spontaneously and in a time- and dose-dependent manner after stimulation with IL-1beta, IFN-gamma, or TNF-alpha. Airway epithelial cell supernatants induced an increase of IL-15Ralpha gene expression in ex vivo monocytes, and stimulated DCs enhanced their IL-15Ralpha gene expression up to 300-fold. Airway epithelial cell-conditioned media induced the differentiation of ex vivo monocytes into partially mature DCs (HLA-DR+, DC-SIGN+, CD14+, CD80-, CD83+, CD86+, CCR3+, CCR6(+), CCR7-). Based on their phenotypic (CD123+, BDCA2+, BDCA4+, BDCA1(-), CD1a-) and functional properties (limited maturation upon stimulation with LPS and limited capacity to induce T cell proliferation), these DCs resembled plasmacytoid DCs. The effects of airway epithelial cell supernatants were largely blocked by a neutralizing monoclonal antibody to IL-15. Thus, our results demonstrate that airway epithelial cell-conditioned media have the capacity to differentiate monocytes into functional DCs, a process substantially mediated by epithelial-derived IL-15.
Resumo:
BACKGROUND: Studies on airway remodeling in children with cystic fibrosis (CF) may be hampered by difficulty in obtaining evaluable endobronchial biopsy specimens because of large amounts of mucus and inflammation in the CF airway. We prospectively assessed how the quality of biopsy specimens obtained from children with CF compare with those from children with other airway diseases. METHODS: Fiberoptic bronchoscopy with endobronchial biopsy was performed in 67 CF children (age range, 0.2 to 16.8 years), 34 children with wheeze/asthma (W/A), and 64 control children with chronic respiratory symptoms. Up to three biopsy specimens were taken and stained with hematoxylin and eosin. Biopsy specimen size and structural composition were quantified using stereology. RESULTS: At least one evaluable biopsy specimen was obtained in 72% of CF children, in 79% of children with W/A, and in 72% of control subjects (difference was not significant). The use of large biopsy forceps (2.0 mm) rather than small biopsy forceps (1.0 mm) [odds ratio (OR), 5.8; 95% confidence interval (CI), 1.1 to 29.8; p = 0.037] and the number of biopsy specimens taken (odds ratio, 2.6; 95% confidence interval, 1.3 to 5.2; p = 0.006) significantly contributed to the success rate. Biopsy size and composition were similar between groups, except that CF children and those patients with W/A had a higher percentage of the biopsy specimen composed of muscle than did control subjects (median 6.2% and 9.7% vs 0.9%, respectively; p = 0.002). CONCLUSIONS: Biopsy size and quality are adequate for the study of airway remodeling in CF children as young as 2 months of age. Researchers should use large forceps when possible and take at least two biopsy specimens per patient. An increased airway smooth muscle content of the airway mucosa may contribute to the pathophysiology of CF lung disease.
Resumo:
OBJECTIVES: To assess the microbiota at implants diagnosed with peri-implantitis, implant mucositis, or being clinically healthy. MATERIAL AND METHODS: Clinical and microbiological data were collected from 213 subjects (mean age: 65.7+/-14) with 976 implants in function (mean: 10.8 years, SD+/-1.5). Forty species were identified by the checkerboard DNA-DNA hybridization method. RESULTS: Implant mean % plaque score was 41.8+/-32.4%. Periodontitis defined by bone loss was found in 44.9% of subjects. Implant mucositis was diagnosed in 59% and peri-implantitis in 14.9% of all cases. Neisseria mucosa, Fusobacterium nucleatum sp. nucleatum, F. nucleatum sp. polymorphum, and Capnocytophaga sputigena dominated the implant sub-mucosal microbiota and the sub-gingival microbiota at tooth sites. Implant probing pocket depth at the implant site with the deepest probing depth was correlated with levels of Eikenella corrodens (r=0.16, P<0.05), the levels of F. nucleatum sp. vincentii (r=0.15, P<0.05), Porphyromonas gingivalis (r=0.14, P<0.05), and Micromonas micros (r=0.17, P=0.01). E. corrodens was found in higher levels at implants with mucositis compared with implant health (P<0.05). Subjects who lost teeth due to periodontitis had higher yields of F. nucleatum sp. vincentii (P<0.02) and N. mucosa (P<0.05). Independent of implant status subjects with teeth had higher levels of P. gingivalis (P<0.05), and Leptotrichia buccalis (P<0.05). CONCLUSIONS: At implant sites studied, few bacteria differed by whether subjects were dentate or not or by implant status.