940 resultados para AFM (atomic force microscopy)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 1972 the ionized cluster beam (ICB) deposition technique was introduced as a new method for thin film deposition. At that time the use of clusters was postulated to be able to enhance film nucleation and adatom surface mobility, resulting in high quality films. Although a few researchers reported singly ionized clusters containing 10$\sp2$-10$\sp3$ atoms, others were unable to repeat their work. The consensus now is that film effects in the early investigations were due to self-ion bombardment rather than clusters. Subsequently in recent work (early 1992) synthesis of large clusters of zinc without the use of a carrier gas was demonstrated by Gspann and repeated in our laboratory. Clusters resulted from very significant changes in two source parameters. Crucible pressure was increased from the earlier 2 Torr to several thousand Torr and a converging-diverging nozzle 18 mm long and 0.4 mm in diameter at the throat was used in place of the 1 mm x 1 mm nozzle used in the early work. While this is practical for zinc and other high vapor pressure materials it remains impractical for many materials of industrial interest such as gold, silver, and aluminum. The work presented here describes results using gold and silver at pressures of around 1 and 50 Torr in order to study the effect of the pressure and nozzle shape. Significant numbers of large clusters were not detected. Deposited films were studied by atomic force microscopy (AFM) for roughness analysis, and X-ray diffraction.^ Nanometer size islands of zinc deposited on flat silicon substrates by ICB were also studied by atomic force microscopy and the number of atoms/cm$\sp2$ was calculated and compared to data from Rutherford backscattering spectrometry (RBS). To improve the agreement between data from AFM and RBS, convolution and deconvolution algorithms were implemented to study and simulate the interaction between tip and sample in atomic force microscopy. The deconvolution algorithm takes into account the physical volume occupied by the tip resulting in an image that is a more accurate representation of the surface.^ One method increasingly used to study the deposited films both during the growth process and following, is ellipsometry. Ellipsometry is a surface analytical technique used to determine the optical properties and thickness of thin films. In situ measurements can be made through the windows of a deposition chamber. A method for determining the optical properties of a film, that is sensitive only to the growing film and accommodates underlying interfacial layers, multiple unknown underlayers, and other unknown substrates was developed. This method is carried out by making an initial ellipsometry measurement well past the real interface and by defining a virtual interface in the vicinity of this measurement. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small devices, in the range of nanometers, are playing a major role in today's technology. The field of nanotechnology is concerned with materials and systems whose structures and components exhibit novel and significantly improved physical, chemical and biological properties, phenomena and processes due to their small nanoscale size. Researches more and more are finding that structural features in the range of about 1 to 100 nanometers behave quite differently than isolated molecules (1 nanometer) or bulk materials. For comparison, a 10 nanometer structure is 1000 times smaller than the diameter of a human hair. The virtues of working in the nanodomain are increasingly recognized by the scientific community and discussed in the popular press. The use of such devices is expected to revolutionize our industries and lives. ^ This work mainly focuses on the fabrication, characterization and discovery of new nanostructured thin films. This research consists of the design of a new high-deposition rate nanoparticle machine for depositing nanostructured films from beams of nanoparticles and investigation film's unique optical and physical properties.^ A high-deposition rate nanoparticle machine was designed, built and successfully tested. Different nanostructured thin films were deposited from Copper, Gold, Iron and Zirconium targets with the grain size of between 1 to 20 nm under different conditions. Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and x-ray diffraction (XRD) confirmed nanoscale grain size structures of deposited films. The optical properties of the nanostructured films deposited from copper, Iron and Zirconium targets were significantly different from optical properties of bulk and thin films. Zr, Cu and Fe films were transparent. Gold films revealed an epitaxial contact with the silicon substrate with interesting crystal structures. ^ The new high-deposition rate nanoparticle machine was able to deposit new nanostructured films with different properties from bulk and thin films reported in the literatures. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently the data storage industry is facing huge challenges with respect to the conventional method of recording data known as longitudinal magnetic recording. This technology is fast approaching a fundamental physical limit, known as the superparamagnetic limit. A unique way of deferring the superparamagnetic limit incorporates the patterning of magnetic media. This method exploits the use of lithography tools to predetermine the areal density. Various nanofabrication schemes are employed to pattern the magnetic material are Focus Ion Beam (FIB), E-beam Lithography (EBL), UV-Optical Lithography (UVL), Self-assembled Media Synthesis and Nanoimprint Lithography (NIL). Although there are many challenges to manufacturing patterned media, the large potential gains offered in terms of areal density make it one of the most promising new technologies on the horizon for future hard disk drives. Thus, this dissertation contributes to the development of future alternative data storage devices and deferring the superparamagnetic limit by designing and characterizing patterned magnetic media using a novel nanoimprint replication process called "Step and Flash Imprint lithography". As opposed to hot embossing and other high temperature-low pressure processes, SFIL can be performed at low pressure and room temperature. Initial experiments carried out, consisted of process flow design for the patterned structures on sputtered Ni-Fe thin films. The main one being the defectivity analysis for the SFIL process conducted by fabricating and testing devices of varying feature sizes (50 nm to 1 μm) and inspecting them optically as well as testing them electrically. Once the SFIL process was optimized, a number of Ni-Fe coated wafers were imprinted with a template having the patterned topography. A minimum feature size of 40 nm was obtained with varying pitch (1:1, 1:1.5, 1:2, and 1:3). The Characterization steps involved extensive SEM study at each processing step as well as Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM) analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, an Atomic Force Microscopy (AFM) roughness analysis was performed on non-commercial Nitinol alloys with Electropolished (EP) and Magneto-Electropolished (MEP) surface treatments and commercially available stents by measuring Root-Mean-Square (RMS) , Average Roughness (Ra), and Surface Area (SA) values at various dimensional areas on the alloy surfaces, ranging from (800 x 800 nm) to (115 x 115µm), and (800 x 800 nm) to (40 x 40 µm) on the commercial stents. Results showed that NiTi-Ta 10 wt% with an EP surface treatment yielded the highest overall roughness, while the NiTi-Cu 10 wt% alloy had the lowest roughness when analyzed over (115 x 115 µm). Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analysis revealed unique surface morphologies for surface treated alloys, as well as an aggregation of ternary elements Cr and Cu at grain boundaries in MEP and EP surface treated alloys, and non-surface treated alloys. Such surface micro-patterning on ternary Nitinol alloys could increase cellular adhesion and accelerate surface endothelialization of endovascular stents, thus reducing the likelihood of in-stent restenosis and provide insight into hemodynamic flow regimes and the corrosion behavior of an implantable device influenced from such surface micro-patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the tremendous application potentials of carbon nanotubes (CNTs) proposed by researchers in the last two decades, efficient experimental techniques and methods are still in need for controllable production of CNTs in large scale, and for conclusive characterizations of their properties in order to apply CNTs in high accuracy engineering. In this dissertation, horizontally well-aligned high quality single-walled carbon nanotubes (SWCNTs) have been successfully synthesized on St-cut quartz substrate by chemical vapor deposition (CVD). Effective radial moduli (Eradial) of these straight SWCNTs have been measured by using well-calibrated tapping mode and contact mode atomic force microscopy (AFM). It was found that the measured Eradial decreased from 57 to 9 GPa as the diameter of the SWCNTs increased from 0.92 to 1.91 nm. The experimental results were consistent with the recently reported theoretical simulation data. The method used in this mechanical property test can be easily applied to measure the mechanical properties of other low-dimension nanostructures, such as nanowires and nanodots. The characterized sample is also an ideal platform for electrochemical tests. The electrochemical activities of redox probes Fe(CN)63-/4-, Ru(NH3) 63+, Ru(bpy)32+ and protein cytochrome c have been studied on these pristine thin films by using aligned SWCNTs as working electrodes. A simple and high performance electrochemical sensor was fabricated. Flow sensing capability of the device has been tested for detecting neurotransmitter dopamine at physiological conditions with the presence of Bovine serum albumin. Good sensitivity, fast response, high stability and anti-fouling capability were observed. Therefore, the fabricated sensor showed great potential for sensing applications in complicated solution.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoparticles have enormous potential in diagnostic and therapeutic studies. We have demonstrated that the amyloid beta mixed with and conjugated to dihydrolipoic acid- (DHLA) capped CdSe/ZnS quantum dots (QDs) of size approximately 2.5 nm can be used to reduce the fibrillation process. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used as tools for analysis of fibrillation. There is a significant change in morphology of fibrils when amyloid β (1–42) (Aβ (1–42)) is mixed or conjugated to the QDs. The length and the width of the fibrils vary under modified conditions. Thioflavin T (ThT) fluorescence supports the decrease in fibril formation in presence of DHLA-capped QDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One innovative thought in biomolecular electronics is the exploitation of electron transfer proteins. Using nature's self assembly techniques, proteins can build highly organized edifices with retained functional activity, and they can serve as platforms for biosensors. In this research work, Yeast Cytochrome C (YCC) is immobilized with a help of a linker molecule, 3-Mercaptopropyltrimethoxysilane (3-MPTS) on a hydroxylated surface of a silicon substrate. Atomic Force Microscopy (AFM) is used for characterization. AFM data shows immobilization of one YCC molecule in between eight grids that are formed by the linker molecules. 3-MPTS monolayers are organized in grids that are 1.2 nm apart. Immobilization of 3-MPTS was optimized using a concentration of 5 mM in a completely dehydrated state for 30 minutes. The functionally active grids of YCC can now be incorporated with Cytochrome C oxidase on a Platinum electrode surface for transfer of electrons in development of biosensors, such as nitrate sensor, that are small in size, cheaper, and easier to manufacture than the top-down approach of fabrication of molecular biodevices

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plasma nitriding has been used in industrial and technological applications for large-scale show an improvement in the mechanical, tribological, among others. In order to solve problems arising in the conventional nitriding, for example, rings constraint (edge effect) techniques have been developed with different cathodes. In this work, we studied surfaces of commercially pure titanium (Grade II), modified by plasma nitriding treatment through different settings cathodes (hollow cathode, cathodic cage with a cage and cathodic cage with two cages) varying the temperature 350, 400 and 430oC, with the goal of obtaining a surface optimization for technological applications, evaluating which treatment generally showed better results under the substrate. The samples were characterized by the techniques of testing for Atomic Force Microscopy (AFM), Raman spectroscopy, microhardness, X-ray diffraction (XRD), and a macroscopic analysis. Thus, we were able to evaluate the processing properties, such as roughness, topography, the presence of interstitial elements, hardness, homogeneity, uniformity and thickness of the nitrided layer. It was observed that all samples were exposed to nitriding modified relative to the control sample (no treatment) thus having increased surface hardness, the presence of TiN observed by XRD as per both Raman and a significant change in the roughness of the treated samples . It was found that treatment in hollow cathode, despite having the lowest value of microhardness between treated samples, was presented the lowest surface roughness, although this configuration samples suffer greater physical aggressiveness of treatment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferroelectric ceramics with perovskite structure (ABO3) are widely used in solid state memories (FeRAM’s and DRAM's) as well as multilayered capacitors, especially as a thin films. When doped with zirconium ions, BaTiO3-based materials form a solid solution known as barium zirconate titanate (BaTi1-xZrxO3). Also called BZT, this material can undergo significant changes in their electrical properties for a small variation of zirconium content in the crystal lattice. The present work is the study of the effects of deposition parameters of BaTi0,75Zr0,25O3 thin films by spin-coating method on their morphology and physical properties, through an experimental design of the Box-Behnken type. The resin used in the process has been synthesized by the polymeric precursor method (Pechini) and subsequently split into three portions each of which has its viscosity adjusted to 10, 20 and 30 mPa∙s by means of a rotary viscometer. The resins were then deposited on Pt/Ti/SiO2/Si substrates by spin-coating method on 15 different combinations of viscosity, spin speed (3000, 5500 and 8000 rpm) and the number of deposited layers (5, 8 and 11 layers) and then calcined at 800 ° C for 1 h. The phase composition of the films was analyzed by X-ray diffraction (XRD) and indexed with the JCPDS 36-0019. Surface morphology and grain size were observed by atomic force microscopy (AFM) indicating uniform films and average grain size around 40 nm. Images of the cross section of the films were obtained by scanning electron microscopy field emission (SEM-FEG), indicating very uniform thicknesses ranging from 140-700 nm between samples. Capacitance measurements were performed at room temperature using an impedance analyzer. The films presented dielectric constant values of 55-305 at 100kHz and low dielectric loss. The design indicated no significant interaction effects between the deposition parameters on the thickness of the films. The response surface methodology enabled better observes the simultaneous effect of variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, our goal was develop and describe a molecular model of the enzyme-inhibiting interaction which can be used for an optimized projection of a Microscope Force Atomic nanobiosensor to detect pesticides molecules, used in agriculture, to evaluate its accordance with limit levels stipulated in valid legislation for its use. The studied herbicide (imazaquin) is a typical member of imidazolinone family and is an inhibitor of the enzymatic activity of Acetohydroxiacid Synthase (AHAS) enzyme that is responsible for the first step of pathway for the synthesis of side-chains in amino acids. The analysis of this enzyme property in the presence of its cofactors was made to obtain structural information and charge distribution of the molecular surface to evaluate its capacity of became immobilized on the Microscopy Atomic Force tip. The computational simulation of the system, using Molecular Dynamics, was possible with the force-field parameters for the cofactor and the herbicides obtained by the online tool SwissParam and it was implemented in force-field CHARMM27, used by software GROMACS; then appropriated simulations were made to validate the new parameters. The molecular orientation of the AHAS was defined based on electrostatic map and the availability of the herbicide in the active site. Steered Molecular Dynamics (SMD) Simulations, followed by quantum mechanics calculations for more representative frames, according to the sequential QM/MM methodology, in a specific direction of extraction of the herbicide from the active site. Therefore, external harmonic forces were applied with similar force constants of AFM cantilever for to simulate herbicide detection experiments by the proposed nanobiosensor. Force value of 1391 pN and binding energy of -14048.52 kJ mol-1 were calculated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon microlenses are a very important tool for coupling terahertz (THz) radiation into antennas and detectors in integrated circuits. They can be used in a large array structures at this frequency range reducing considerably the crosstalk between the pixels. Drops of photoresist have been deposited and their shape transferred into the silicon by means of a Reactive Ion Etching (RIE) process. Large silicon lenses with a few mm diameter (between 1.5 and 4.5 mm) and hundreds of μm height (between 50 and 350 μm) have been fabricated. The surface of such lenses has been characterized using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), resulting in a surface roughness of about ∼3 μm, good enough for any THz application. The beam profile at the focal plane of such lenses has been measured at a wavelength of 10.6 μm using a tomographic knife-edge technique and a CO2 laser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’estradiol (E2) est une hormone femelle qui joue un rôle essentiel, à la fois dans la régulation et dans la détermination de certaines conditions physiologiques in vivo, telle que la différenciation et la prolifération cellulaire. Lorsque l’E2 est donné en supplément, par exemple dans le cas de thérapie hormonale, deux effets sont observés, un effet génomique et un effet non-génomique, de par son interaction avec les récepteurs à œstrogène du noyau ou de la membrane cellulaire, respectivement. L’effet non-génomique est plus difficile à étudier biologiquement parce que l’effet se produit sur une échelle de temps extrêmement courte et à cause de la nature hydrophobe de l’E2 qui réduit sa biodisponibilité et donc son accessibilité aux cellules cibles. C’est pourquoi il est nécessaire de développer des systèmes d’administration de l’E2 qui permettent de n’étudier que l’effet non-génomique de l’œstrogène. Une des stratégies employée consiste à greffer l’E2 à des macromolécules hydrophiles, comme de l’albumine de sérum bovin (BSA) ou des dendrimères de type poly(amido)amine, permettant de maintenir l’interaction de l’E2 avec les récepteurs d’œstrogène de la membrane cellulaire et d’éviter la pénétration de l’E2 dans le noyau des cellules. Toutefois, ces systèmes macromolécules-E2 sont critiquables car ils sont peu stables et l’E2 peut se retrouver sous forme libre, ce qui affecte sa localisation cellulaire. L’objectif de cette thèse est donc de développer de nouvelles plateformes fonctionnalisées avec de l’E2 en utilisant les approches de synthèses ascendantes et descendantes. Le but de ces plateformes est de permettre d’étudier le mécanisme de l’effet non-génomique de l’E2, ainsi que d’explorer des applications potentielles dans le domaine biomédical. L’approche ascendante est basée sur un ligand d’E2 activé, l’acide 17,α-éthinylestradiol-benzoïque, attaché de façon covalente à un polymère de chitosan avec des substitutions de phosphorylcholine (CH-PC-E2). L’estradiol est sous forme de pro-drogue attachée au polymère qui s’auto-assembler pour former un film. L’effet biologique de la composition chimique du film de chitosan-phosphorylcholine a été étudié sur des cellules endothéliales. Les films de compositions chimiques différentes ont préalablement été caractérisés de façon physicochimique. La topographie de la surface, la charge de surface, ainsi que la rhéologie des différents films contenant 15, 25, ou 40% molaires de phosphorylcholine, ont été étudiés par microscopie à force atomique (AFM), potentiel zêta, résonance plasmonique de surface et par microbalance à cristal de quartz avec dissipation (QCM-D). Les résultats de QCM-D ont montré que plus la part molaire en phosphorylcholine est grande moins il y a de fibrinogène qui s’adsorbe sur le film de CH-PC. Des cellules humaines de veine ombilicale (HUVECs) cultivées sur des films de CH-PC25 et de CH-PC40 forment des amas cellulaire appelés sphéroïdes au bout de 4 jours, alors que ce n’est pas le cas lorsque ces cellules sont cultivées sur des films de CH-PC15. L’attachement de l’estradiol au polymère a été caractérisé par plusieurs techniques, telles que la résonance magnétique nucléaire de proton (1H NMR), la spectroscopie infrarouge avec transformée de Fourier à réfraction totale atténuée (FTIR-ATR) et la spectroscopie UV-visible. La nature hydrogel des films (sa capacité à retenir l’eau) ainsi que l’interaction des films avec des récepteurs à E2, ont été étudiés par la QCM-D. Des études d’imagerie cellulaires utilisant du diacétate de diaminofluoresceine-FM ont révélé que les films hydrogels de CH-PC-E2 stimulent la production d’oxyde nitrique par les cellules endothéliales, qui joue un rôle protecteur pour le système cardiovasculaire. L’ensemble de ces études met en valeur les rôles différents et les applications potentielles qu’ont les films de type CH-PC-E2 et CH-PC dans le cadre de la médecine cardiovasculaire régénérative. L’approche descendante est basée sur l’attachement de façon covalente d’E2 sur des ilots d’or de 2 μm disposés en rangées et espacés par 12 μm sur un substrat en verre. Les ilots ont été préparés par photolithographie. La surface du verre a quant à elle été modifiée à l’aide d’un tripeptide cyclique, le cRGD, favorisant l’adhésion cellulaire. L’attachement d’E2 sur les surfaces d’or a été suivi et confirmé par les techniques de SPR et de QCM-D. Des études d’ELISA ont montré une augmentation significative du niveau de phosphorylation de la kinase ERK (marqueur important de l’effet non-génomique) après 1 heure d’exposition des cellules endothéliales aux motifs alternant l’E2 et le cRGD. Par contre lorsque des cellules cancéreuses sont déposées sur les surfaces présentant des motifs d’E2, ces cellules ne croissent pas, ce qui suggère que l’E2 n’exerce pas d’effet génomique. Les résultats de l’approche descendante montrent le potentiel des surfaces présentant des motifs d’E2 pour l’étude des effets non-génomiques de l’E2 dans un modèle in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclic phosphazene trimers [N3P3(OC6H5)5OC5H4N·Ti(Cp)2Cl][PF6] (3), [N3P3(OC6H4CH2CN·Ti(Cp)2Cl)6][PF6]6 (4), [N3P3(OC6H4-But)5(OC6H4CH2CN·Ti(Cp)2Cl)][PF6] (5), [N3P3(OC6H5)5C6H4CH2CN·Ru(Cp)(PPh3)2][PF6] (6), [N3P3(OC6H5)5C6H4CH2CN·Fe(Cp)(dppe)][PF6] (7) and N3P3(OC6H5)5OC5H4N·W(CO)5 (8) were prepared and characterized. As a model, the simple compounds [HOC5H5N·Ti(Cp)2Cl]PF6 (1) and [HOC6H4CH2CN·Ti(Cp)2Cl]PF6 (2) were also prepared and characterized. Pyrolysis of the organometallic cyclic trimers in air yields metallic nanostructured materials, which according to transmission and scanning electron microscopy (TEM/SEM), energy-dispersive X-ray microanalysis (EDX), and IR data, can be formulated as either a metal oxide, metal pyrophosphate or a mixture in some cases, depending on the nature and quantity of the metal, characteristics of the organic spacer and the auxiliary substituent attached to the phosphorus cycle. Atomic force microscopy (AFM) data indicate the formation of small island and striate nanostructures. A plausible formation mechanism which involves the formation of a cyclomatrix is proposed, and the pyrolysis of the organometallic cyclic phosphazene polymer as a new and general method for obtaining metallic nanostructured materials is discussed.