937 resultados para ACTIN-BINDING PROTEINS
Resumo:
Cachexia in cancer is characterised by progressive depletion of both adipose tissue stores and skeletal muscle mass. Two catabolic factors produced by cachexia-inducing tumours have the potential for inducing these changes in body composition: (i) proteolysis-inducing factor (PIF) which acts on skeletal muscle to induce both protein degradation and inhibit protein synthesis, (ii) lipid-mobilising factor (LMF), which has been shown to directly induce lipolysis in isolated epididymal murine white adipocytes. Administration of lipid-mobilising factor (LMF) to mice produced a specific reduction in carcass lipid with a tendency to increase non-fat carcass mass. Treatment of murine myoblasts, myotubes and tumour cells with tumour-produced LMF, caused concentration dependent stimulation of protein synthesis, within a 24hr period. It produced an increase in intracellular cyclic AMP levels, which was linearly related to the increase in protein synthesis. The observed effect was attenuated by pretreating cells with the adenylate cyclase inhibitor, MDL12330A and was additive with stimulation produced by forskolin. Both propranolol and a specific 3 adrenergic antagonist SR59230A, significantly reduced the stimulation of protein synthesis induced by LMF. LMF also affected protein degradation in vitro, as demonstrated by a reduction in proteasome activity, a key component of the ubiquitin-dependent proteolytic pathway. These effects were opposite to those produced by PIF which caused both a decrease in the rate of protein synthesis and an elevation on protein breakdown when incubated in vitro.Incubation of LMF with a fat cell line produced alterations in the levels of guanine-nucleotide binding proteins (G proteins). This was also evident in adipocyte plasma membranes isolated from mice bearing the tumour model of cachexia, MAC16 adenocarcinoma and from patients with cancer cachexia. Progression through the cachectic state induced an upregulation of stimulatory G proteins paralleled with a downregulation of inhibitory G proteins. These changes would contribute to the increased lipid mobilisation seen in cancer cachexia.
Resumo:
The antitumour imidazotetrazinones are believed to act as prodrugs for the triazene series of alkylating agents, showing a marked pteference for the alkylation of the middle guanine residue in a run of three or more contiguous guanines. However, the. exact nature of the interactions of imidazotetrazinones within the micro~environment of DNA are; as yet unknown. In order to examine such interactions a three pronged approach involving molecular modelling, synthetic chemistry and biological analysis has been undertaken during the course of this project. . Molecular modelling studies have shown that for the 8-carboxamido substituted imidazotetrazinones antitumour activity is dependent upon the. presence of a free NH group which can be involved in the formation of both intramolecular and intermolecular hydrogen bonds, and the presence of a non-bulky substituent with a small negative potential . volume. Modelling studies involving the docking of .mitozolomide into the major groove of DNA in the region of a triguanine sequence has shown that a number of hydrogen bonding interactions are feasible. A series of 8-substituted carboxamide derivatives of mitozolomide have been synthesised via the 8-acid chloride and 8-carboxylic acid derivatives including a number of peptide analogues. The peptide derivatives were based upon the key structural features of the helix-turn-helix motif of DNA-binding proteins with a view to developing agents that are capable of binding to DNA with greater selectivity. An examination of the importance of intramolecular hydrogen bonding in influencing the antitumour activity:of :the imidazotetrazinones has led to the synthesis of the novel pyrimido[4',5' :4,3]pyrazolo[5,1-d]-1,2,3,5-tetrazine ring system. In general, in vitro cytotoxicity assays showed that the new derivatives were less active against the TLX5 lymphoma cell line. than the parent compound mitozolomide despite an increased potential for hydrogen bonding interactions. Due to the high reactivity of the: tetrazinone ring system it is difficult to study the interactions between the imidazotetrazinones and DNA. Consequently a number of structural analogues that are stable under physiological conditions have been. prepared based upon the 1,2,3 triazin-4(3H)-one ring system fused with both benzene and pyrazole rings. Although the 3-methylbenzotriazinones failed to antagonise the cytotoxic activity of temozolomide encouraging results with a 3-methylpyrazolotriazinone may suggest the existence of an imidazotetrazinone receptor site within DNA. The potential of guanine rich sequences to promote the alkylating selectivity of imidazotetrazinones by acting as a catalyst for ring cleavage and thereby generation of the alkylating agent was examined. Experiments involving the monitoring: of the rate of breakdown of mitozolomide incubated in the presence of synthetic oIigonucleotides did not reveal any catalytic effect resulting from the DNA. However, it was noted that the breakdown of mitozolomide was dependent upon the type of buffer used in the incubations and this may indeed mask any catalysis by the oligonucleotides.
Resumo:
We have developed a novel multilocus sequence typing (MLST) scheme and database (http://pubmlst.org/pacnes/) for Propionibacterium acnes based on the analysis of seven core housekeeping genes. The scheme, which was validated against previously described antibody, single locus and random amplification of polymorphic DNA typing methods, displayed excellent resolution and differentiated 123 isolates into 37 sequence types (STs). An overall clonal population structure was detected with six eBURST groups representing the major clades I, II and III, along with two singletons. Two highly successful and global clonal lineages, ST6 (type IA) and ST10 (type IB1), representing 64?% of this current MLST isolate collection were identified. The ST6 clone and closely related single locus variants, which comprise a large clonal complex CC6, dominated isolates from patients with acne, and were also significantly associated with ophthalmic infections. Our data therefore support an association between acne and P. acnes strains from the type IA cluster and highlight the role of a widely disseminated clonal genotype in this condition. Characterization of type I cell surface-associated antigens that are not detected in ST10 or strains of type II and III identified two dermatan-sulphate-binding proteins with putative phase/antigenic variation signatures. We propose that the expression of these proteins by type IA organisms contributes to their role in the pathophysiology of acne and helps explain the recurrent nature of the disease. The MLST scheme and database described in this study should provide a valuable platform for future epidemiological and evolutionary studies of P. acnes.
Resumo:
Background: During alternative splicing, the inclusion of an exon in the final mRNA molecule is determined by nuclear proteins that bind cis-regulatory sequences in a target pre-mRNA molecule. A recent study suggested that the regulatory codes of individual RNA-binding proteins may be nearly immutable between very diverse species such as mammals and insects. The model system Drosophila melanogaster therefore presents an excellent opportunity for the study of alternative splicing due to the availability of quality EST annotations in FlyBase. Methods: In this paper, we describe an in silico analysis pipeline to extract putative exonic splicing regulatory sequences from a multiple alignment of 15 species of insects. Our method, ESTs-to-ESRs (E2E), uses graph analysis of EST splicing graphs to identify mutually exclusive (ME) exons and combines phylogenetic measures, a sliding window approach along the multiple alignment and the Welch’s t statistic to extract conserved ESR motifs. Results: The most frequent 100% conserved word of length 5 bp in different insect exons was “ATGGA”. We identified 799 statistically significant “spike” hexamers, 218 motifs with either a left or right FDR corrected spike magnitude p-value < 0.05 and 83 with both left and right uncorrected p < 0.01. 11 genes were identified with highly significant motifs in one ME exon but not in the other, suggesting regulation of ME exon splicing through these highly conserved hexamers. The majority of these genes have been shown to have regulated spatiotemporal expression. 10 elements were found to match three mammalian splicing regulator databases. A putative ESR motif, GATGCAG, was identified in the ME-13b but not in the ME-13a of Drosophila N-Cadherin, a gene that has been shown to have a distinct spatiotemporal expression pattern of spliced isoforms in a recent study. Conclusions: Analysis of phylogenetic relationships and variability of sequence conservation as implemented in the E2E spikes method may lead to improved identification of ESRs. We found that approximately half of the putative ESRs in common between insects and mammals have a high statistical support (p < 0.01). Several Drosophila genes with spatiotemporal expression patterns were identified to contain putative ESRs located in one exon of the ME exon pairs but not in the other.
Resumo:
Protein coding genes are comprised of protein-coding exons and non-protein-coding introns. The process of splicing involves removal of the introns and joining of the exons to form a mature messenger RNA, which subsequently undergoes translation into polypeptide. The spliceosome is a large, RNA/protein assembly of five small nuclear RNAs as well as over 300 proteins, which catalyzes intron removal and exon ligation. The selection of specific exons for inclusion in the mature messenger RNA is spatio-temporally regulated and results in production of an enormous diversity of polypeptides from a single gene locus. This phenomenon, known as alternative splicing, is regulated, in part, by protein splicing factors, which target the spliceosome to exon/intron boundaries. The first part of my dissertation (Chapters II and III) focuses on the discovery and characterization of the 45 kilodalton FK506 binding protein (FKBP45), which I discovered in the silk moth, Bombyx mori, as a U1 small nuclear RNA binding protein. This protein family binds the immunosuppressants FK506 and rapamycin and contains peptidyl-prolyl cis-trans isomerase activity, which converts polypeptides from cis to trans about a proline residue. This is the first time that an FKBP has been identified in the spliceosome. The second section of my dissertation (Chapters IV, V, VI and VII) is an investigation of the potential role of small nuclear RNA sequence variants in the control of splicing. I identified 46 copies of small nuclear RNAs in the 6X whole genome shotgun of the Bombyx mori p50T strain. These variants may play a role in differential binding of specific proteins that mediate alternative splicing. Along these lines, further investigation of U2 snRNA sequence variants in Bombyx mori demonstrated that some U2 snRNAs preferentially assemble into high molecular weight spliceosomal complexes over others. Expression of snRNA variants may represent another mechanism by which the cell is able to fine tune the splicing process.
Resumo:
DNA-binding and RNA-binding proteins are usually considered ‘undruggable’ partly due to the lack of an efficient method to identify inhibitors from existing small molecule repositories. Here we report a rapid and sensitive high-throughput screening approach to identify compounds targeting protein–nucleic acids interactions based on protein–DNA or protein–RNA interaction enzyme-linked immunosorbent assays (PDI-ELISA or PRI-ELISA). We validated the PDI-ELISA method using the mammalian highmobility- group protein AT-hook 2 (HMGA2) as the protein of interest and netropsin as the inhibitor of HMGA2–DNA interactions. With this method we successfully identified several inhibitors and an activator for HMGA2–DNA interactions from a collection of 29 DNA-binding compounds. Guided by this screening excise, we showed that netropsin, the specific inhibitor of HMGA2–DNA interactions, strongly inhibited the differentiation of the mouse pre-adipocyte 3T3-L1 cells into adipocytes, most likely through a mechanism by which the inhibition is through preventing the binding of HMGA2 to the target DNA sequences. This method should be broadly applicable to identify compounds or proteins modulating many DNA-binding or RNA-binding proteins.
Resumo:
Dengue fever, currently the most important arbovirus, is transmitted by the bite of the Aedes aegypti mosquito. Given the absence of a prophylactic vaccine, the disease can only be controlled by combating the vector insect. However, increasing reports of resistance and environmental damage caused by insecticides have led to the urgent search for new safer alternatives. Twenty - um plant s eed extracts from the Caatinga were prepared , tested and characterized . Sodium phosphate ( 50 mM pH 8.0) was used as extractor. All extracts showed larvicidal and ovipositional deterrence activity . Extracts of D. grandiflora, E. contortisiliquum, A. cearenses , C. ferrea and C. retusa were able to attract females for posture when in low co ncentration . In the attractive concentrations, the CE of E. contortisiliquum and A. cearenses were able to kill 52% and 100% of the larvae respectively . The extracts of A. cearenses , P. viridiflora, E. velutina, M. urundeuva and S. brasiliensis were also pupicides, while extracts of P. viridiflora, E. velutina, E. contortisiliquum , A. cearenses, A. colubrina, D. grandiflora , B. cheilantha , S. spectabilis, C. pyramidalis, M. regnelli e G. americana displayed adulticidal activity. All extracts were toxic to C. dubia zooplankton . The EB of E. velutina and E. contortisiliquum did not affect the viability of fibroblasts . In all extracts were identified at least two potential insecticidal proteins such as enzyme inhibitors, lectins and chitin - binding proteins and components of secondary metabolism . Considering all bioassays , the extracts from A. cearenses, P. viridiflora, E. contortisiliquum , S. brasiliensis, E. velutina and M. urundeuva were considered the most promising . The E. contortisiliquum extracts was the only one who did not show pupicida activity, indicating that its mechanism of action larvicide and adulticidal is related only to the ingesti on of toxic compounds by insect , so it was selected to be fragmenting. As observed for the CE , th e protein fractions of E. contortisiliquum also showed larvicidal activity, highlighting that F2 showed higher larvicidal activity and lower en vironmental toxicity than the CE source. The reduction in the proteolytic activity of larvae fed with crude extra ct and fractions of E. contortisiliquum suggest ed that the trypsin inhibitors ( ITEc) would be resp onsible for larvicidal activity . However the increase in the purification of this inhibitor resulted in loss of larvicidal activity , but the absence of trypsin inhibitor reduced the effectiveness of the fractions , indicating that the ITEC contributes to the larvicidal activity of this extract. Not been observed larvicidal activity and adulticide in rich fraction vicilin, nor evidence of the contribution o f this molecule for the larvicidal activity of the extract. The results show the potential of seeds from plant extracts of Caatinga as a source of active molecules against insects A. aegypti at different stages of its development cycle, since they are comp osed of different active compounds, including protein nature, which act on different mechanisms should result in the death of insec
Resumo:
Peer reviewed
Resumo:
The goal of this study was to determine whether beta(1)-adrenergic receptor (AR) and beta(2)-AR differ in regulating cardiomyocyte survival and apoptosis and, if so, to explore underlying mechanisms. One potential mechanism is that cardiac beta(2)-AR can activate both G(s) and G(i) proteins, whereas cardiac beta(1)-AR couples only to G(s). To avoid complicated crosstalk between beta-AR subtypes, we expressed beta(1)-AR or beta(2)-AR individually in adult beta(1)/beta(2)-AR double knockout mouse cardiac myocytes by using adenoviral gene transfer. Stimulation of beta(1)-AR, but not beta(2)-AR, markedly induced myocyte apoptosis, as indicated by increased terminal deoxynucleotidyltransferase-mediated UTP end labeling or Hoechst staining positive cells and DNA fragmentation. In contrast, beta(2)-AR (but not beta(1)-AR) stimulation elevated the activity of Akt, a powerful survival signal; this effect was fully abolished by inhibiting G(i), G(beta gamma), or phosphoinositide 3 kinase (PI3K) with pertussis toxin, beta ARK-ct (a peptide inhibitor of G(beta gamma)), or LY294002, respectively. This indicates that beta(2)-AR activates Akt via a G(i)-G(beta gamma)-PI3K pathway. More importantly, inhibition of the G(i)-G(beta gamma)-PI3K-Akt pathway converts beta(2)-AR signaling from survival to apoptotic. Thus, stimulation of a single class of receptors, beta(2)-ARs, elicits concurrent apoptotic and survival signals in cardiac myocytes. The survival effect appears to predominate and is mediated by the G(i)-G(beta gamma)-PI3K-Akt signaling pathway.
Resumo:
The six-layered neuron structure in the cerebral cortex is the foundation for human mental abilities. In the developing cerebral cortex, neural stem cells undergo proliferation and differentiate into intermediate progenitors and neurons, a process known as embryonic neurogenesis. Disrupted embryonic neurogenesis is the root cause of a wide range of neurodevelopmental disorders, including microcephaly and intellectual disabilities. Multiple layers of regulatory networks have been identified and extensively studied over the past decades to understand this complex but extremely crucial process of brain development. In recent years, post-transcriptional RNA regulation through RNA binding proteins has emerged as a critical regulatory nexus in embryonic neurogenesis. The exon junction complex (EJC) is a highly conserved RNA binding complex composed of four core proteins, Magoh, Rbm8a, Eif4a3, and Casc3. The EJC plays a major role in regulating RNA splicing, nuclear export, subcellular localization, translation, and nonsense mediated RNA decay. Human genetic studies have associated individual EJC components with various developmental disorders. We showed previously that haploinsufficiency of Magoh causes microcephaly and disrupted neural stem cell differentiation in mouse. However, it is unclear if other EJC core components are also required for embryonic neurogenesis. More importantly, the molecular mechanism through which the EJC regulates embryonic neurogenesis remains largely unknown. Here, we demonstrated with genetically modified mouse models that both Rbm8a and Eif4a3 are required for proper embryonic neurogenesis and the formation of a normal brain. Using transcriptome and proteomic analysis, we showed that the EJC posttranscriptionally regulates genes involved in the p53 pathway, splicing and translation regulation, as well as ribosomal biogenesis. This is the first in vivo evidence suggesting that the etiology of EJC associated neurodevelopmental diseases can be ribosomopathies. We also showed that, different from other EJC core components, depletion of Casc3 only led to mild neurogenesis defects in the mouse model. However, our data suggested that Casc3 is required for embryo viability, development progression, and is potentially a regulator of cardiac development. Together, data presented in this thesis suggests that the EJC is crucial for embryonic neurogenesis and that the EJC and its peripheral factors may regulate development in a tissue-specific manner.
Resumo:
Post-transcriptional regulation of cytoplasmic mRNAs is an efficient mechanism of regulating the amounts of active protein within a eukaryotic cell. RNA sequence elements located in the untranslated regions of mRNAs can influence transcript degradation or translation through associations with RNA-binding proteins. Tristetraprolin (TTP) is the best known member of a family of CCCH zinc finger proteins that targets adenosine-uridine rich element (ARE) binding sites in the 3’ untranslated regions (UTRs) of mRNAs, promoting transcript deadenylation through the recruitment of deadenylases. More specifically, TTP has been shown to bind AREs located in the 3’-UTRs of transcripts with known roles in the inflammatory response. The mRNA-binding region of the protein is the highly conserved CCCH tandem zinc finger (TZF) domain. The synthetic TTP TZF domain has been shown to bind with high affinity to the 13-mer sequence of UUUUAUUUAUUUU. However, the binding affinities of full-length TTP family members to the same sequence and its variants are unknown. Furthermore, the distance needed between two overlapping or neighboring UUAUUUAUU 9-mers for tandem binding events of a full-length TTP family member to a target transcript has not been explored. To address these questions, we recombinantly expressed and purified the full-length C. albicans TTP family member Zfs1. Using full-length Zfs1, tagged at the N-terminus with maltose binding protein (MBP), we determined the binding affinities of the protein to the optimal TTP binding sequence, UUAUUUAUU. Fluorescence anisotropy experiments determined that the binding affinities of MBP-Zfs1 to non-canonical AREs were influenced by ionic buffer strength, suggesting that transcript selectivity may be affected by intracellular conditions. Furthermore, electrophoretic mobility shift assays (EMSAs) revealed that separation of two core AUUUA sequences by two uridines is sufficient for tandem binding of MBP-Zfs1. Finally, we found evidence for tandem binding of MBP-Zfs1 to a 27-base RNA oligonucleotide containing only a single ARE-binding site, and showed that this was concentration and RNA length dependent; this phenomenon had not been seen previously. These data suggest that the association of the TTP TZF domain and the TZF domains of other species, to ARE-binding sites is highly conserved. Domains outside of the TZF domain may mediate transcript selectivity in changing cellular conditions, and promote protein-RNA interactions not associated with the ARE-binding TZF domain.
In summary, the evidence presented here suggests that Zfs1-mediated decay of mRNA targets may require additional interactions, in addition to ARE-TZF domain associations, to promote transcript destabilization and degradation. These studies further our understanding of post-transcriptional steps in gene regulation.
Resumo:
mRNA localization is emerging as a critical cellular mechanism for the spatiotemporal regulation of protein expression and serves important roles in oogenesis, embryogenesis, cell fate specification, and synapse formation. Signal sequence-encoding mRNAs are localized to the endoplasmic reticulum (ER) membrane by either of two mechanisms, a canonical mechanism of translation on ER-bound ribosomes (signal recognition particle pathway), or a poorly understood direct ER anchoring mechanism. In this study, we identify that the ER integral membrane proteins function as RNA-binding proteins and play important roles in the direct mRNA anchoring to the ER. We report that one of the ER integral membrane RNA-binding protein, AEG-1 (astrocyte elevated gene-1), functions in the direct ER anchoring and translational regulation of mRNAs encoding endomembrane transmembrane proteins. HITS-CLIP and PAR-CLIP analyses of the AEG-1 mRNA interactome of human hepatocellular carcinoma cells revealed a high enrichment for mRNAs encoding endomembrane organelle proteins, most notably encoding transmembrane proteins. AEG-1 binding sites were highly enriched in the coding sequence and displayed a signature cluster enrichment downstream of encoded transmembrane domains. In overexpression and knockdown models, AEG-1 expression markedly regulates translational efficiency and protein functions of two of its bound transcripts, MDR1 and NPC1. This study reveals a molecular mechanism for the selective localization of mRNAs to the ER and identifies a novel post-transcriptional gene regulation function for AEG-1 in membrane protein expression.
Resumo:
PURPOSE: The prognostic significance of ATM mutations in chronic lymphocytic leukemia (CLL) is unclear. We assessed their impact in the context of a prospective randomized trial. PATIENTS AND METHODS: We analyzed the ATM gene in 224 patients treated on the Leukemia Research Fund Chronic Lymphocytic Leukemia 4 (LRF-CLL4) trial with chlorambucil or fludarabine with and without cyclophosphamide. ATM status was analyzed by denaturing high-performance liquid chromatography and was related to treatment response, survival, and the impact of TP53 alterations for the same patient cohort. RESULTS: We identified 36 ATM mutations in 33 tumors, 16 with and 17 without 11q deletion. Mutations were associated with advanced disease stage and involvement of multiple lymphoid sites. Patients with both ATM mutation and 11q deletion showed significantly reduced progression-free survival (median, 7.4 months) compared with those with ATM wild type (28.6 months), 11q deletion alone (17.1 months), or ATM mutation alone (30.8 months), but survival was similar to that in patients with monoallelic (6.7 months) or biallelic (3.4 months) TP53 alterations. This effect was independent of treatment, immunoglobulin heavy chain variable gene (IGHV) status, age, sex, or disease stage. Overall survival for patients with biallelic ATM alterations was also significantly reduced compared with those with ATM wild type or ATM mutation alone (median, 42.2 v 85.5 v 77.6 months, respectively). CONCLUSION: The combination of 11q deletion and ATM mutation in CLL is associated with significantly shorter progression-free and overall survival following first-line treatment with alkylating agents and purine analogs. Assessment of ATM mutation status in patients with 11q deletion may influence the choice of subsequent therapy.
Resumo:
PURPOSE: This study sought to establish whether functional analysis of the ATM-p53-p21 pathway adds to the information provided by currently available prognostic factors in patients with chronic lymphocytic leukemia (CLL) requiring frontline chemotherapy. EXPERIMENTAL DESIGN: Cryopreserved blood mononuclear cells from 278 patients entering the LRF CLL4 trial comparing chlorambucil, fludarabine, and fludarabine plus cyclophosphamide were analyzed for ATM-p53-p21 pathway defects using an ex vivo functional assay that uses ionizing radiation to activate ATM and flow cytometry to measure upregulation of p53 and p21 proteins. Clinical endpoints were compared between groups of patients defined by their pathway status. RESULTS: ATM-p53-p21 pathway defects of four different types (A, B, C, and D) were identified in 194 of 278 (70%) samples. The type A defect (high constitutive p53 expression combined with impaired p21 upregulation) and the type C defect (impaired p21 upregulation despite an intact p53 response) were each associated with short progression-free survival. The type A defect was associated with chemoresistance, whereas the type C defect was associated with early relapse. As expected, the type A defect was strongly associated with TP53 deletion/mutation. In contrast, the type C defect was not associated with any of the other prognostic factors examined, including TP53/ATM deletion, TP53 mutation, and IGHV mutational status. Detection of the type C defect added to the prognostic information provided by TP53/ATM deletion, TP53 mutation, and IGHV status. CONCLUSION: Our findings implicate blockade of the ATM-p53-p21 pathway at the level of p21 as a hitherto unrecognized determinant of early disease recurrence following successful cytoreduction.
Resumo:
BACKGROUND: ALK rearrangement is particularly observed in signet-ring sub-type adenocarcinoma. Since fluorescence in situ hybridization (FISH) is not suitable for mass screening, we aimed to characterize the predictive utility of tumour morphology and ALK immunoreactivity to identify ALK rearrangement, in a primary lung adenocarcinoma dataset enriched for signet-ring morphology, compared with that of other morphology. METHODS: 7 adenocarcinomas from diagnostic archives reported with signet-ring morphology were assessed and compared with 11 adenocarcinomas without signet-ring features over the same time period. Growth patterns were reviewed, ALK expression was assessed by standard immunohistochemistry using ALK1 clone and Envision detection (Dako), and ALK rearrangement was assessed by FISH (Abbott Molecular). Associations between groups and predictive utility of tumour morphology and ALK expression using FISH as gold standard were calculated. RESULTS: 2 excision lung biopsy cases with pure (100%) signet-ring morphology and solid patterns demonstrated diffuse moderate cytoplasmic ALK immunoreactivity (2+) and harboured ALK rearrangements (p=0.007), unlike 5 mixed-signet-ring and 11 non-signet-ring adenocarcinomas, which showed negative or 1+ immunoreactivity; and did not harbour ALK rearrangements (p>0.1). ALK expression was not associated with ALK copy number. 6 of 7 cases with signet ring morphology stained for TTF-1. Pure signet-ring morphology and moderate ALK expression were both associated with ALK rearranged tumours. CONCLUSION: ALK rearrangement is strongly associated with ALK immunoreactivity, and was seen only in tumours with pure signet-ring morphology and solid growth pattern. Tumour morphology, growth pattern and ALK immunoreactivity appear to be good indicators of ALK rearrangement, with TTF-1 positivity aiding in proving primary pulmonary origin.