999 resultados para A priori density
Resumo:
Equilibrium geometries, vibrational frequencies and dissociation energies of hafnium dimer and trimer were studied by density functional methods B3LYP, BLYP, B3PW91, BHLYP, BP86, B3P86, mPW1PW91 and PBE1PBE. The results indicate that singlet is the ground state both for hafnium dimer and for trimer. For hafnium dimer, the calculated bond distance is less sensitive to the methods used. Except at BHLYP level, the calculated vibrational frequency is comparable to the experimental value. For hafnium trimer, equilateral triangle with D-3h symmetry is slightly favored compared with isosceles triangle with C-2v, symmetry except at BHLYP level. This conclusion is in agreement with experiment in which the ground state of Hf-3 is fluxional and low-spin or closed shell is preferred.
Resumo:
La-2, Yb-2, and Lu-2 have been studied by use of the density-functional methods B3LYP, BLYP, B3PW91, BHLYP, BP86, B3P86, MPW1PW91, and PBE1PBE. In these density-functional methods, the exchange functional is from either Becke's three-parameter HF-DFT hybrid exchange functional (B3), pure DFT exchange functional of 1988 (B), a modification of the half-and-half HF/DFT hybrid method (BH), Perdew-Wang 1991 (PW91), or Barone's modified PW91 (MPW1), while the correlation functional is from either Lee, Yang, and Parr (LYP), Perdew-Wang 1991 (PW91), or Perdew 86 (P86). PBE1PBE is the generalized-gradient-approximation exchange-correlation functional of Perdew, Burke, and Ernzerhof. For La-2, the calculated bond distance is in reasonable agreement with the experiment, but the calculated vibrational frequency is underestimated significantly compared with the experiment. Only BP86 and B3P86 have the best performance in reproducing the experimental dissociation energy for La-2. For the van der Waals dimer Yb-2, three functionals, B3LYP, BLYP, and BHLYP have excellent performance in reproducing the spectroscopic constants compared with both the experiment and previous theoretical studies.
Resumo:
Bond distances, vibrational frequencies and dissociation energies for the ground state of Lu-2 were studied by density functional methods B3LYP, B3PW91, BLYP, BHLYP, BP86, B3P86, MPW1PW91, PBE1PBE and SVWN with CEP-121G and SDD basis sets. Singlet state is predicted to be the most stable. CEP-121G has a better overall performance than SDD. At CEP-121G basis set, all density functional methods used in this study perform well in reproducing the spectroscopic constants.
Resumo:
Two series of tensile tests with constant crosshead speeds (ranging from 5 to 200 mm/min) and tensile relaxation tests (at strains from 0.03 to 0.09) were performed on low-density polyethylene in the subyield region of deformations at room temperature. Mechanical tests were carried out on nonannealed specimens and on samples annealed for 24 h at the temperatures T = 50, 60, 70, 80, and 100 degreesC. Constitutive equations were derived for the time-dependent response of semicrystalline polymers at isothermal deformations with small strains. A polymer is treated as an equivalent heterogeneous network of chains bridged by temporary junctions (entanglements, physical crosslinks, and lamellar blocks). The network is thought of as an ensemble of mesoregions linked with each other. The viscoelastic behavior of a polymer is modeled as a thermally induced rearrangement of strands (separation of active strands from temporary junctions and merging of dangling strands with the network). The viscoplastic response reflects sliding of junctions in the network with respect to their reference positions driven by macrostrains. Stress-strain relations involve five material constants that were found by fitting the observations.
Resumo:
Three series of tensile tests with constant cross-head speeds (ranging from 5 to 200 mm/min), tensile relaxation tests (at strains from 0.03 to 0.09) and tensile creep tests (at stresses from 2.0 to 6.0 MPa) are performed on low-density polyethylene at room temperature. Constitutive equations are derived for the time-dependent response of semicrystalline polymers at isothermal deformation with small strains. A polymer is treated as an equivalent heterogeneous network of chains bridged by temporary junctions (entanglements, physical cross-links and lamellar blocks). The network is thought of as an ensemble of meso-regions linked with each other. The viscoelastic behavior of a polymer is modelled as thermally-induced rearrangement of strands (separation of active strands from temporary junctions and merging of dangling strands with the network). The viscoplastic response reflects mutual displacement of meso-domains driven by macro-strains. Stress-strain relations for uniaxial deformation are developed by using the laws of thermodynamics. The governing equations involve five material constants that are found by fitting the observations. Fair agreement is demonstrated between the experimental data and the results of numerical simulation.
Resumo:
Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI-DBSA). PANI-DBSA, low-density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin-rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI-DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI-DBSA/LDPE, and this was attributed to the PANI-DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high-resolution optical microscopy indicated that PANI-DBSA formed a conducting network at a high concentration of PANI-DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured.
Resumo:
Graft chain propagation rate coefficients (k(p.g)) for grafting AA onto linear low density polyethylene (LLDPE) in the melt in ESR tubes have been measured via Fourier transform infrared (FTIR) spectroscopy and electron spin resonance (ESR) spectroscopy in the temperature range from 130 to 170 degrees C. To exclude the effect of homopolymerization on the grafting. the LLDPE was pre-irradiated in the air by electron beam to generate the peroxides and then treated with iodide solution to eliminating one kind of peroxides, hydroperoxide. The monomer conversion is determined by FTIR and the chain propagation free-radical concentration is deduced from the double integration of the well-resolved ESR spectra, consisting nine lines in the melt. The temperature dependence of k(p.g) is expressed:The magnitude of k(p.g) from FTIR and ESR analysis is in good agreement with the theoretical data deduced from ethylene-AA copolymerization, suggesting this method could reliably and directly provide the propagation rate coefficient. The comparison of k(p.g) with the data extrapolated from solution polymerization at modest temperature indicates that the extrapolated data might not be entirely fitting to discuss the kinetics behavior in the melt.
Resumo:
We report the construction of hybrid permeable-base transistors, in vertical architecture, using tris(8-hydroxyquinoline) aluminum as emitter, a thin gold layer as base, and n-type silicon as collector. These transistors present high common-base current gain, can be operated at low driving voltages, and allow high current density.
Resumo:
The electron affinities and ionization potentials of 4d and 5d transition metal atoms were studied by CCSD(T), MP2 and density functional methods. The calculated results indicate that density functional method B3LYP has the best overall performance in predicting both electron affinity and ionization potential. SVWN gives largest IP and EA for 4d and 5d atoms. For the two basis sets used in this study, LANL2DZ and SDD, the performance of B3LYP/SDD combination is better than B3LYP/LANL2DZ, in particular for electron affinity calculation.
Resumo:
Glass beads were used to improve the mechanical and thermal properties of high-density polyethylene (HDPE). HDPE/glass-bead blends were prepared in a Brabender-like apparatus, and this was followed by press molding. Static tensile measurements showed that the modulus of the HDPE/glass-bead blends increased considerably with increasing glass-bead content, whereas the yield stress remained roughly unchanged at first and then decreased slowly with increasing glass-bead content. Izod impact tests at room temperature revealed that the impact strength changed very slowly with increasing glass-bead content up to a critical value; thereafter, it increased sharply with increasing glass-bead content. That is, the lzod impact strength of the blends underwent a sharp transition with increasing glass-bead content. It was calculated that the critical interparticle distance for the HDPE/glass-bead blends at room temperature (25degreesC) was 2.5 mum. Scanning electron microscopy observations indicated that the high impact strength of the HDPE/glass-bead blends resulted from the deformation of the HDPE matrix. Dynamic mechanical analyses and thermogravimetric measurements implied that the heat resistance and heat stability of the blends tended to increase considerably with increasing glass-bead content.
Resumo:
Blends of linear low-density polyethylene (LLDPE) with polystyrene (PS) and blends of LLDPE with high-impact polystyrene (HIPS) were prepared through a reactive extrusion method. For increased compatibility of the two blending components, a Lewis acid catalyst, aluminum chloride (AlCl3), was adopted to initiate the Friedel-Crafts alkylation reaction between the blending components. Spectra data from Raman spectra of the LLDPE/PS/AlCl3 blends extracted with tetrahydrofuran verified that LLDPE segments were grafted to the para position of the benzene rings of PS, and this confirmed the graft structure of the Friedel-Crafts reaction between the polyolefin and PS. Because the in situ generated LLDPE-g-PS and LLDPE-g-HIPS copolymers acted as compatibilizers in the relative blending systems, the mechanical properties of the LLDPE/PS and LLDPE/HIPS blending systems were greatly improved. For example, after compatibilization, the Izod impact strength of an LLDPE/PS blend (80/20 w/w) was increased from 88.5 to 401.6 J/m, and its elongation at break increased from 370 to 790%. For an LLDPE/HIPS (60/40 w/w) blend, its Charpy impact strength was increased from 284.2 to 495.8 kJ/m(2). Scanning electron microscopy micrographs showed that the size of the domains decreased from 4-5 to less than 1 mum, depending on the content of added AlCl3.
Resumo:
Noncrosslinking linear low-density polyethylene-grafted acrylic acid (LLDPE-g-AA) was prepared by melt-reactive extrusion in our laboratory. The thermal behavior of LLDPE-g-AA was investigated by using differential scanning calorimetry (DSC). Compared with neat linear low-density polyethylene (LLDPE), melting temperature (T-m) of LLDPE-g-AA increased a little, the crystallization temperature (T-c) increased about 4degreesC, and the melting enthalpy (DeltaH(m) ) decreased with an increase in acrylic acid content. Isothermal crystallization kinetics of LLDPE and LLDPE-g-AA samples were carried out by using DSC. The overall crystallization rate of LLDPE was smaller than that of grafted samples. It showed that the grafted acrylic acid monomer onto LLDPE acted as a nucleating agent. Crystal morphologies of LLDPE-g-AA and LLDPE were examined by using SEM. Spherulite sizes of LLDPE-g-AA samples were lower than that of LLDPE.
Resumo:
The dynamic mean-field density functional method, driven from the generalized time-dependent Ginzburg-Landau equation, was applied to the mesoscopic dynamics of the multi-arms star block copolymer melts in two-dimensional lattice model. The implicit Gaussian density functional expression of a multi-arms star block copolymer chain for the intrinsic chemical potentials was constructed for the first time. Extension of this calculation strategy to more complex systems, such as hyperbranched copolymer or dendrimer, should be straightforward. The original application of this method to 3-arms block copolymer melts in our present works led to some novel ordered microphase patterns, such as hexagonal (HEX) honeycomb lattice, core-shell HEX lattice, knitting pattern, etc. The observed core-shell HEX lattice ordered structure is qualitatively in agreement with the experiment of Thomas [Macromolecules 31, 5272 (1998)].
Resumo:
In this paper, the structures and properties of the neutral and doped blends of poly(3-dodecylthiophene) (P3DDT) with low-density polyethylene (LDPE) were investigated. Wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), Fourier transform infrared spectra (FTIR), and scanning electron microscopy (SEM) were used to characterize the structures and morphologies of the blends, and conductivity was also measured. It was found that separate crystallizations occur between P3DDT and LDPE. When the amount of P3DDT is small in the blend, it has the effect of a nucleation reagent and has some influence on the crystal structure. After doping, the interaction force between the molecular chains increases, and leads to a more compact packing and a more uniform dispersion in morphology. Through blending, the thermal stability of pure component could be greatly improved, especially when the P3DDT content is 5 wt %. The conductivity measurements indicate that the conductivity increases with the increase of the P3DDT composition and doping time.
Resumo:
A poly(butylene terephthalate) (PBT)/linear low-density polyethylene (LLDPE) alloy was prepared with a reactive extrusion method, For improved compatibility of the blending system, LLDPE grafted with acrylic acid (LLDPE-g-AA) by radiation was adopted in place of plain LLDPE. The toughness and extensibility of the PBT/LLDPE-g-AA blends, as characterized by the impact strengths and elongations at break, were much improved in comparison with the toughness and extensibility of the PBT/LLDPE blends at the same compositions. However, there was not much difference in their tensile (or flexural) strengths and moduli. Scanning electron microscopy photographs showed that the domains of PBT/LLDPE-g-AA were much smaller and their dispersions were more homogeneous than the domains and dispersions of the PBT/ T,T PE blends. Compared with the related values of the PBT/LLDPE blends, the contents and melting temperatures of the usual spherulites of PBT in PBT/LLDPE-g-AA decreased.