970 resultados para 929 Sture
Resumo:
Concentrations of minor and trace elements (Li, Rb, Sr, Ba, Fe, and Mn) in interstitial water (IW) were found in samples collected during Ocean Drilling Program (ODP) Leg 166 from Sites 1005, 1006, and 1007 on the western flank of the Great Bahama Bank (GBB). Concentrations of Li range from near-seawater values immediately below the sediment/water interface to a maximum of 250 µM deep in Site 1007. Concentrations determined during shore-based studies are substantially lower than the shipboard data presented in the Leg 166 Initial Reports volume (range of 28-439 µM) because of broad-band interferences from high dissolved Sr concentrations in the shipboard analyses. Rubidium concentrations of 1.3-1.7 µM were measured in IW from Site 1006 when salinity was less than 40 psu. A maximum of 2.5 µM is reached downhole at a salinity of 50 psu. Shipboard and shore-based concentrations of Sr2+ are in excellent agreement and vary from 0.15 mM near the sediment water interface to 6.8 mM at depth. The latter represent the highest dissolved Sr2+ concentrations observed to date in sediments cored during the Deep Sea Drilling Project (DSDP) or ODP. Concentrations of Ba2+ span three orders of magnitude (0.1-227µM). Concentrations of Fe (<0.1-14 µM) and Mn (0.1-2 µM) exhibit substantially greater fluctuations than other constituents. The concentrations of minor and trace metals in pore fluids from the GBB transect sites are mediated principally by changes in pore-water properties resulting from early diagenesis of carbonates associated with microbial degradation of organic matter, and by the abundance of detrital materials that serve as a source of these elements. Downcore variations in the abundance of detrital matter reflect differences in carbonate production during various sea-level stands and are more evident at the more proximal Site 1005 than at the more pelagic Site 1006. The more continuous delivery of detrital matter deep in Site 1007 and throughout all of Site 1006 is reflected in a greater propensity to provide trace elements to solution. Concentrations of dissolved Li+ derive principally from (1) release during dissolution of biogenic carbonates and subsequent exclusion during recrystallization and (2) release from partial dissolution of Li-bearing detrital phases, especially ion-exchange reactions with clay minerals. A third but potentially less important source of Li+ is a high-salinity brine hypothesized to exist in Jurassic age (unsampled) sediments underlying those sampled during Leg 166. The source of dissolved Sr2+ is almost exclusively biogenic carbonate, particularly aragonite. Concentrations of dissolved Sr2+ and Ba2+ are mediated by the solubility of their sulfates. Barite and detrital minerals appear to be the more important source of dissolved Ba2+. Concentrations of Fe and Mn2+ in anoxic pore fluids are mediated by the relative insolubility of pyrite and incorporation into diagenetic carbonates. The principal sources of these elements are easily reduced Fe-Mn-rich phases including Fe-rich clays found in lateritic soils and aoelian dust.
(Table 3) Relative depth and age, CaCO3, d18O, d13C and Sr/Ca analysis from ODP Leg 130, 154 and 138
Resumo:
Interpretations of calcite strontium/calcium records in terms of ocean history and calcite diagenesis require distinguishing the effects on deep-sea calcite sediments of changes in ocean chemistry, of different mixes of calcite-depositing organisms as sediment contributors through time and space, and of the loss of Sr during diagenetic calcite recrystallization. In this paper Sr/Ca and d18O values of bulk calcium carbonate sediments are used to estimate the relative extent of calcite recrystallization in samples from four time points (core tops, 5.6, 9.4, and 37.1 Ma) at eight Ocean Drilling Program sites in the equatorial Atlantic (Ceara Rise) and equatorial Pacific (Ontong Java Plateau and two eastern equatorial Pacific sites). The possibility that site-to-site differences in calcite Sr/Ca at a given time point originated from temporal variations in ocean chemistry was eliminated by careful age control of samples for each time point, with sample ages differing by less than the oceanic residence times of Sr and Ca. The Sr/Ca and d18O values of 5.6- and 9.4-Ma samples from the less-carbonate-rich eastern equatorial Pacific sites and Ceara Rise Site 929 appear to be less diagenetically altered than the Sr/Ca and d18O values of contemporaneous samples from the more carbonate-rich sites. It is evident from these data that both Sr/Ca and d18O in bulk calcite have been diagenetically altered in some samples 5.6 Ma and older. These data indicate that noncarbonate sedimentary components, like clay and biogenic silica, have partially suppressed recrystallization at the lower carbonate sites. Sr/Ca data from the less altered, carbonate-poor sites indicate higher oceanic Sr/Ca relative to today at 5.6 and 9.4 Ma.
Resumo:
This is the second of three volumes which comprise Khvandemīr's well known and important general history, completed in 929/1523, which spans the creation of the world up to the death of Shah Ismāʻīl Safavī I. The work includes particularly detailed information about Herat under Sultan Husayn Bayqara, the last Timurid ruler in Herat, as well as Shah Ismāʻīl and Bābur's life. This work has been published in both Persian and English editions.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Contiene:
Resumo:
Also includes facsimile of t.p. of 1682 ed. printed at London for Edward Brewster.
Resumo:
Detached from: Philosophical transactions of the Royal Society of London. 1760. 51: 929-935, pl. 22-23.
Resumo:
Includes indexes.
Resumo:
Replaces Effect of grazing intensity upon vegetation and cattle gains on ponderosa pine-bunchgrass ranges of the Front Range of Colorado, by W. M. Johnson, issued as U.S. Dept. of Agriculture Circular no. 929.