1000 resultados para 860[82].07[Puig]
Resumo:
Back Row: Pat Woodburn (Coach), Rhonda Walcarius, Melanie Brown, Patty Stamps, Lyn Storm, Diane Hilko, Jackie Kuntze, Janice Jockel Front Row: Maureen Kelly, Lena Olszewski, Trudy Montel, Carolyn Foreman, Dawn Dixon, Peggy Stamps
Resumo:
Back Row: Al Pedler (Coach), Murray McEachern, John Popham, David Heyworth, Colin Harris, George Nixon Middle Row: Renee Traver, Wendy Wells Front Row: Maggie Swan, Debbie Belair, Katherine Coy
Resumo:
Back Row: Murray Mc Eachern, John Popham, Colin Harris, David Heyworth, George Nixon, Al Pedler (Coach) Front Row: Maggie Swan, Debbie Belair, Katharine Coy
Resumo:
Back Row: Paul Jackson (Asst. Coach), Paul DeGagne (Manager), Angelo Pontello, Yvan Prevost, Greg Foy, Ken Murray, Steve Ashfield, Rick Berard, Andy MacMillan, Kelly Toppazzini, Carl Van Bolderen, John Dakin, Loran Prentice, Joe Kenny (Trainer), Ron Anderson (Coach) Front Row: Logan Trafford, Mark Warren, Pat Gallagher, Phil Powers, Daryl Clancy, Ted Sawicki, Gord Christie, John Hogg, Brian Onifrichuk, Doug Riopelle, Shawn Barry Absent: Paul Hanley, Brad MacMillan, Rico Schirru, Mike Quinn (Asst. Coach)
Resumo:
Sue Quait receiving the Oarswoman of the Year award from coach John Gleddie
Resumo:
Back Row: J.B. Owens, Ross Smith (Head Coach), Adam Frost, Derrick Harwood, Dave DeRose, Bill Arniel, Danny Mazor, Alan Ross, Randy McKeller, Pete McDougall, Ray D'Archi, Kelvin Oda, Mark Pelletier, Eric Thompson, Marty Houston, Ken White (Asst. Coach) Front Row: Peter Love, Chris Peskett, Duff Porteous, Bart Ward, Dave Sohmer, Gary Gautier, Ken Murray, Dave Tamowski, Steve Shaughnessy, Jeff Wood Absent: Alfred Esmaily, Luc Gignac, Fred Kovacs, Andrew Norman
Resumo:
Back Row: John MacNeil (Coach), John MacNail Jr, John Murray, Joel Walton, Frank Cipriano, Benny Grossi, Rino Berardi, Louis Famelos, Doug Rowan, Ron Di Felice Front Row: Ivan Hunt, Roger Vanoostveen, Dave Gibson, Joe Perri, Kent Mayhew, Jim Baldassarro, Guenther Baur Absent: Neil Dunsmore
Resumo:
Back Row: Maura Purdon (Coach), Kelly Grantham, Liz Jansen, Diane Thiesen, Louise Argenta, Rhonda, Oatman, Kelly Fahlenbock (Asst. Coach) Middle Row: Kaaren Quartermain, Sherri Crossman, Sue Crowley, Kin Zamecnik Front Row: June LeDrew, Darlene Danis Absent: Margo Schijns
Resumo:
From left to right: H. T. Lillies (Coach), Rudolph Ambacher, Bill Hadfield, Michel Thibodeau, Bill Haines, Larry Plummer, Bill Smale, and Kelvin Oda (Manager). Absent: Gordon McNeice, Tom Dagg, Hong Wey Kang, Darrel Murphey, Darren Cannell, Ian Shackel, John Bernie.
Resumo:
The objective of this study was to determine whether clearwater and brownwater lakes differed in their rate of acidification as inferred by subfossil diatoms analyzed in recent downcore sediments. Differences between associations of diatom populations in brownwater and clearwater environments were characterized. Sediment cores were taken from four lakes located north and east of Lake Superior, near Wawa, Ontario. Two of these lakes were humicrich, brownwater lakes ( lakes U1 and CB2). The two other lakes were clearwater lakes ( lakes Xl and CF). The regression of Nygaard log index-alpha for surficial diatom sediments on observed pH ( Inferred pH = 6.57 - 0.82 log index-alpha ), was utilized to infer lake pH in recent sediments of these lakes. Upon analyzing the downcore diatoms, it was discovered that no significant change, in downcore diatom inferred pH, could be detected in the two brownwater lakes. In contrast, the two clearwater lakes showed significant shifts in downcore diatom inferred pH. In one of these lakes, pH had dropped from 5.3 to 4.5, in the top 9.0 cm of the core, while in the second lake, pH had dropped from 5.4 to 5.0 in the top 1.5 cm of the core. These findings suggested that humic substances, found in brownwater lakes, imparted a buffering capacity to these lake waters. In the clearwater lakes, the decrease in pH was very probably a consequence of acid precipitation. The Ambrosia rise ( circa 1890 ) occurred at the same depth in both brownwater lakes ( 11.0 - 12.0 cm). In both clearwater lakes, the Ambrosia rise occurred at a depth of 14.0 - 15.0 cm. This suggested a lower sedimentation rate in the brownwater lakes. pH influenced the total percentage composition of diatom pH indicator groups. Greater numbers of alkaliphilous taxa were found in less acidic lakes ( e.g. Lake Ul ), While greater numbers of acidloving forms were found in highly acidic lakes ( e.g. Lake Xl ). There was a greater abundance of indifferent forms in the brownwater lakes, than in the clearwater lakes. A number of diatom genera and species were found to be associated with either clearwater or brownwater conditions. The centric diatom, ~elosira distans, significantly increased in abundance in the recent sediments of both clearwater lakes. This may be indicating a shift toward a more oligotrophic state within these acidic, clearwater lakes. This study suggested that a pH index based on subfossil diatoms may be a sensitive indicator of changing lake pH. This study also indicated that humic substances may playa more important role, than previously acknowledged, in controlling the pH dynamics of lake waters, and in determining diatom populations.
Resumo:
Trilobites ¥tere collected from Ordovician and Devonian formations of Ontario} New York} Ohio} Oklahoma} and Indiana. Diversity was generally low} but 19..?telllS and Ph..~tY>ps ¥tere the most abundant species from the Ordovician and Devonian} respectively. Recent marine arthropods ¥tere collected from the Atlantic shore of the middle Florida Keys} and from the Pacific and lagoonal waters at Cape Beale} B. C. Fresh-water arthropods were collected along the shore of the Severn River in northcentral Ontario. Cuticles ¥tere analyzed for major} minor and trace elements, 180 and 13C isotopes, as ¥tell as examined by scanning electron micr?scope to identify original and diagenetic fabrics. Examination of trilobite cuticles by scanning electron microscope revealed several microstructures consistent with those observed in Recent arthropods. Microstructures} such as setae and tegumental gland duct openings} in like sized Lim/IllS and Isoteline trilobites may indicate common ancestral origins for these organisms, or simply parallel cuticle evolutions. The dendritic microstructure, originally' thought to be a diagenetic indicator, was found in Recent specimens and therefore its presence in trilobites may be suggestive of the delicate nature of diagenesis in trilobites. The absence of other primary microstructures in trilobites may indicate alteration, taxonomic control} or that there is some inherent feature of S EM examination which may' not allow detection of some features} while others are apparently visit·le onl~1 under SH.·1. The region of the cuticle sampled for examination is also a major influence in detecting pristine microstructures, as not all areas of trilobite and Recent arthropod cuticles will have microstructures identifiable in a SEM study. Subtleties in the process of alteration, however} ma~·· leave pristine microstructures in cuticles that are partial~/ silicified or do 10m itized, and degree and type of alteration may vary stratigraphically and longitudinally within a unit. The presence of fused matrices, angular calcite rhombs, and pyrite in the cuticle are thought to be indicative of altered cuticles, although pyritization may not affect the entire cuticle. t-~atural processes in Recent arthropods, such as molting, lead to variations in cuticle chemistries, and are thought to reflect the area of concentration of the elements during calcification. The level of sodium in Recent arthropods was found to be higher than that in trilobites, but highly mobile when sUbjected to the actions of VY'€'athering. Less saline water produced lovy'€'r magnesium and higher calcium values in Recent specimens .. and metal variations in pristine Ordovician trilobite cuticle appears to follow the constraints outlined for Recent arthropods, of regulation due to the chemislry of the surrounding medium. In diagenetic analysis, sodium, strontium and magnesium proved most beneficial in separating altered from least altered trilobites. Using this criterion, specimens from shale show the least amount of geochemical alteration, and have an original mineralogy of 1.7 - 2.4 mole % MgC03 (8000 t(> 9500 ppm magnesium) for both /s>..?/e/11S lJA'i.riff!11S and PseIAit'11J17ites I..itmirpin..itl/~ and 2.8 - 3.3 mole % MgC03 (5000 to 7000 ppm magnesium) for Ph.i{).?PS This is Slightly lower than the mineralogy of Recent marine arthropods (4.43 - 12.1 mole % MgC03), and slightly higher than that of fresh-water crayfish (0.96 - 1.82 mole % MgC03). Geochemically pristine trilobites were also found to possess primary microstructures. Stable isotope values and trends support the assertion that marine-meteoriclburial fluids were responsible for the alteration observed in a number of the trilobite specimens. The results of this stUdy suggest that fossil material has to be evaluated separately along taxonomic and lithological lines to arrive at sensible diagenetic and e nvironmenta I interpretations.