962 resultados para 3D Computer Graphics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the School of Computing of the University of Dundee, United Kingdom, from 2010 to 2012. This document is a scientific report of the work done, main results, publications and accomplishment of the objectives of the 2-year post-doctoral research project with reference number BP-A 00239. The project has addressed the topic of older people (60+) and Information and Communication Technologies (ICT), which is a topic of growing social and research interest, from a Human-Computer Interaction perspective. Over a 2-year period (June 2010-June 2012), we have conducted classical ethnography of ICT use in a computer clubhouse in Scotland, addressing interaction barriers and strategies, social sharing practices in Social Network Sites, and ICT learning, and carried out rapid ethnographical studies related to geo-enabled ICT and e-government services towards supporting independent living and active ageing. The main results have provided a much deeper understanding of (i) the everyday use of Computer-Mediated Communication tools, such as video-chats and blogs, and its evolution as older people’s experience with ICT increases over time, (ii) cross-cultural aspects of ICT use in the north and south of Europe, (iii) the relevance of cognition over vision in interacting with geographical information and a wide range of ICT tools, despite common stereotypes (e.g. make things bigger), (iv) the important relationship offline-online to provide older people with socially inclusive and meaningful eservices for independent living and active ageing, (v) how older people carry out social sharing practices in the popular YouTube, (vi) their user experiences and (vii) the challenges they face in ICT learning and the strategies they use to become successful ICT learners over time. The research conducted in this project has been published in 17 papers, 4 in journals – two of which in JCR, 5 in conferences, 4 in workshops and 4 in magazines. Other public output consists of 10 invited talks and seminars.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interfacial micromotion is closely associated to the long-term success of cementless hip prostheses. Various techniques have been proposed to measure them, but only a few number of points over the stem surface can be measured simultaneously. In this paper, we propose a new technique based on micro-Computer Tomography (μCT) to measure locally the relative interfacial micromotions between the metallic stem and the surrounding femoral bone. Tantalum beads were stuck at the stem surface and spread at the endosteal surface. Relative micromotions between the stem and the endosteal bone surfaces were measured at different loading amplitudes. The estimated error was 10μm and the maximal micromotion was 60μm, in the loading direction, at 1400N. This pilot study provided a local measurement of the micromotions in the 3 direction and at 8 locations on the stem surface simultaneously. This technique could be easily extended to higher loads and a much larger number of points, covering the entire stem surface and providing a quasi-continuous distribution of the 3D interfacial micromotions around the stem. The new measurement method would be very useful to compare the induced micromotions of different stem designs and to optimize the primary stability of cementless total hip arthroplasty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional information is much easier to understand than a set of two-dimensional images. Therefore a layman is thrilled by the pseudo-3D image taken in a scanning electron microscope (SEM) while, when seeing a transmission electron micrograph, his imagination is challenged. First approaches to gain insight in the third dimension were to make serial microtome sections of a region of interest (ROI) and then building a model of the object. Serial microtome sectioning is a tedious and skill-demanding work and therefore seldom done. In the last two decades with the increase of computer power, sophisticated display options, and the development of new instruments, an SEM with a built-in microtome as well as a focused ion beam scanning electron microscope (FIB-SEM), serial sectioning, and 3D analysis has become far easier and faster.Due to the relief like topology of the microtome trimmed block face of resin-embedded tissue, the ROI can be searched in the secondary electron mode, and at the selected spot, the ROI is prepared with the ion beam for 3D analysis. For FIB-SEM tomography, a thin slice is removed with the ion beam and the newly exposed face is imaged with the electron beam, usually by recording the backscattered electrons. The process, also called "slice and view," is repeated until the desired volume is imaged.As FIB-SEM allows 3D imaging of biological fine structure at high resolution of only small volumes, it is crucial to perform slice and view at carefully selected spots. Finding the region of interest is therefore a prerequisite for meaningful imaging. Thin layer plastification of biofilms offers direct access to the original sample surface and allows the selection of an ROI for site-specific FIB-SEM tomography just by its pronounced topographic features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A traditional photonic-force microscope (PFM) results in huge sets of data, which requires tedious numerical analysis. In this paper, we propose instead an analog signal processor to attain real-time capabilities while retaining the richness of the traditional PFM data. Our system is devoted to intracellular measurements and is fully interactive through the use of a haptic joystick. Using our specialized analog hardware along with a dedicated algorithm, we can extract the full 3D stiffness matrix of the optical trap in real time, including the off-diagonal cross-terms. Our system is also capable of simultaneously recording data for subsequent offline analysis. This allows us to check that a good correlation exists between the classical analysis of stiffness and our real-time measurements. We monitor the PFM beads using an optical microscope. The force-feedback mechanism of the haptic joystick helps us in interactively guiding the bead inside living cells and collecting information from its (possibly anisotropic) environment. The instantaneous stiffness measurements are also displayed in real time on a graphical user interface. The whole system has been built and is operational; here we present early results that confirm the consistency of the real-time measurements with offline computations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstruction of important parameters such as femoral offset and torsion is inaccurate, when templating is based on plain x-rays. We evaluate intraoperative reproducibility of pre-operative CT-based 3D-templating in a consecutive series of 50 patients undergoing primary cementless THA through an anterior approach. Pre-operative planning was compared to a postoperative CT scan by image fusion. The implant size was correctly predicted in 100% of the stems, 94% of the cups and 88% of the heads (length). The difference between the planned and the postoperative leg length was 0.3 + 2.3 mm. Values for overall offset, femoral anteversion, cup inclination and anteversion were 1.4 mm ± 3.1, 0.6° ± 3.3°, -0.4° ± 5° and 6.9° ± 11.4°, respectively. This planning allows accurate implant size prediction. Stem position and cup inclination are accurately reproducible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most relevant difficulties faced by first-year undergraduate students is to settle into the educational environment of universities. This paper presents a case study that proposes a computer-assisted collaborative experience designed to help students in their transition from high school to university. This is done by facilitating their first contact with the campus and its services, the university community, methodologies and activities. The experience combines individual and collaborative activities, conducted in and out of the classroom, structured following the Jigsaw Collaborative Learning Flow Pattern. A specific environment including portable technologies with network and computer applications has been developed to support and facilitate the orchestration of a flow of learning activities into a single integrated learning setting. The result is a Computer-Supported Collaborative Blended Learning scenario, which has been evaluated with first-year university students of the degrees of Software and Audiovisual Engineering within the subject Introduction to Information and Communications Technologies. The findings reveal that the scenario improves significantly students’ interest in their studies and their understanding about the campus and services provided. The environment is also an innovative approach to successfully support the heterogeneous activities conducted by both teachers and students during the scenario. This paper introduces the goals and context of the case study, describes how the technology was employed to conduct the learning scenario, the evaluation methods and the main results of the experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patient-specific simulations of the hemodynamics in intracranial aneurysms can be constructed by using image-based vascular models and CFD techniques. This work evaluates the impact of the choice of imaging technique on these simulations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new registration algorithm, called Temporal Di eomorphic Free Form Deformation (TDFFD), and its application to motion and strain quanti cation from a sequence of 3D ultrasound (US) images. The originality of our approach resides in enforcing time consistency by representing the 4D velocity eld as the sum of continuous spatiotemporal B-Spline kernels. The spatiotemporal displacement eld is then recovered through forward Eulerian integration of the non-stationary velocity eld. The strain tensor iscomputed locally using the spatial derivatives of the reconstructed displacement eld. The energy functional considered in this paper weighs two terms: the image similarity and a regularization term. The image similarity metric is the sum of squared di erences between the intensities of each frame and a reference one. Any frame in the sequence can be chosen as reference. The regularization term is based on theincompressibility of myocardial tissue. TDFFD was compared to pairwise 3D FFD and 3D+t FFD, bothon displacement and velocity elds, on a set of synthetic 3D US images with di erent noise levels. TDFFDshowed increased robustness to noise compared to these two state-of-the-art algorithms. TDFFD also proved to be more resistant to a reduced temporal resolution when decimating this synthetic sequence. Finally, this synthetic dataset was used to determine optimal settings of the TDFFD algorithm. Subsequently, TDFFDwas applied to a database of cardiac 3D US images of the left ventricle acquired from 9 healthy volunteers and 13 patients treated by Cardiac Resynchronization Therapy (CRT). On healthy cases, uniform strain patterns were observed over all myocardial segments, as physiologically expected. On all CRT patients, theimprovement in synchrony of regional longitudinal strain correlated with CRT clinical outcome as quanti ed by the reduction of end-systolic left ventricular volume at follow-up (6 and 12 months), showing the potential of the proposed algorithm for the assessment of CRT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The objective of this study is to investigate the feasibility of detecting and quantifying 3D cerebrovascular wall motion from a single 3D rotational x-ray angiography (3DRA) acquisition within a clinically acceptable time and computing from the estimated motion field for the further biomechanical modeling of the cerebrovascular wall. Methods: The whole motion cycle of the cerebral vasculature is modeled using a 4D B-spline transformation, which is estimated from a 4D to 2D + t image registration framework. The registration is performed by optimizing a single similarity metric between the entire 2D + t measured projection sequence and the corresponding forward projections of the deformed volume at their exact time instants. The joint use of two acceleration strategies, together with their implementation on graphics processing units, is also proposed so as to reach computation times close to clinical requirements. For further characterizing vessel wall properties, an approximation of the wall thickness changes is obtained through a strain calculation. Results: Evaluation on in silico and in vitro pulsating phantom aneurysms demonstrated an accurate estimation of wall motion curves. In general, the error was below 10% of the maximum pulsation, even in the situation when substantial inhomogeneous intensity pattern was present. Experiments on in vivo data provided realistic aneurysm and vessel wall motion estimates, whereas in regions where motion was neither visible nor anatomically possible, no motion was detected. The use of the acceleration strategies enabled completing the estimation process for one entire cycle in 5-10 min without degrading the overall performance. The strain map extracted from our motion estimation provided a realistic deformation measure of the vessel wall. Conclusions: The authors' technique has demonstrated that it can provide accurate and robust 4D estimates of cerebrovascular wall motion within a clinically acceptable time, although it has to be applied to a larger patient population prior to possible wide application to routine endovascular procedures. In particular, for the first time, this feasibility study has shown that in vivo cerebrovascular motion can be obtained intraprocedurally from a 3DRA acquisition. Results have also shown the potential of performing strain analysis using this imaging modality, thus making possible for the future modeling of biomechanical properties of the vascular wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last few years, there has been a growing focus on faster computational methods to support clinicians in planning stenting procedures. This study investigates the possibility of introducing computational approximations in modelling stent deployment in aneurysmatic cerebral vessels to achieve simulations compatible with the constraints of real clinical workflows. The release of a self-expandable stent in a simplified aneurysmatic vessel was modelled in four different initial positions. Six progressively simplified modelling approaches (based on Finite Element method and Fast Virtual Stenting – FVS) have been used. Comparing accuracy of the results, the final configuration of the stent is more affected by neglecting mechanical properties of materials (FVS) than by adopting 1D instead of 3D stent models. Nevertheless, the differencesshowed are acceptable compared to those achieved by considering different stent initial positions. Regarding computationalcosts, simulations involving 1D stent features are the only ones feasible in clinical context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of rigidity and perseveration respectively gets increasing importance in clinical psychodiagnostics. Recently we have developed a computer-assisted technique which allows to get information about inadequate persisting in psychic processes and behaviour within shortest time and to differentiate between psychopathological groups. 257 patients of both sexes who came for elucidation of their disorders to the department of clinical psychodiagnostics were investigated. The most significant differences between the groups were found in redundance of second degree (the patient has to press 10 buttons indiscriminately according to the beat of a metronom--standard condition) and in personal speed (the patient has to press 10 buttons as fast as possible--speed condition). Furthermore the psychopathological groups were ranged in the particular variables of rigidity according to their mean values and their average ranges the schizophrenics and effective psychoses were characterized by a high tendency of perseveration while the neurotics, patients with organic brain syndrome and alcohol and drug dependents showed more flexibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opinnäytetyöni aiheena on keskeytyneen uusmediatuotannon jatkaminen. Monimuototyön työosana toteutettiin 7-minuuttinen 3D animaatio, joka kertoo Suomen kansalliseepoksen Kalevalan taruhahmosta Väinämöisestä, muistelemassa menneitä. Projekti käynnistettiin alun perin vuonna 2003, mutta resurssien vähetessä se keskeytyi vuoden 2005 loppupuolella. Keväällä 2006 projekti käynnistettiin uuden projektiryhmän voimin, jossa olin itse mukana vastaten muun muassa tuotannonohjauksesta ja hahmoanimoinneista. Uusi projektiryhmä oli henkilöstöresursseiltaan pieni, joten vastuualueet olivat monipuolisia. Keskeytyneen projektin jatkamisen ja haltuunoton haasteellisuus sai minut kiinnostumaan tutkia aihetta tarkemmin. Tuotannonohjaajana vastasin hyvin pitkälle tuotannon uudesta käynnistämisestä ja projektin saattamisesta vihdoin loppuun. Keskeytyneen projektin haltuunotto oli tilanteena kaikille uusi, mikä heijastui vaikeuksina uudelleen käynnistettyyn tuotantoon. Raportin tarkoituksena ei ole olla projektinhallinnallinen käsikirja, sillä käsittelen vain tämän projektin jatkolle oleellisina pidettyjä asioita. Projekti toivottavasti kuitenkin antaa kuvan huolellisen projektinhallinnan ja onnistuneen tuotannonohjauksen tärkeydestä. Jokainen keskeytynyt projekti ei ole aina välttämättä elvytettävissä - ainakaan alkuperäisessä muodossaan. Projektin jatkamista tulisi katsoa aina tapauskohtaisesti. Keskeytymiseen on useimmiten syynsä, joten ongelmien selvittäminen ja niihin puuttuminen on tärkeää ennen jatkopäätöksen tekemistä. Myös projektityöskentelytavat kehittyvät ja pohdin työssäni uusien projektinhallintatapojen, kuten wikien käyttöä projektinhallinnan työkaluna ja projektiyhteisön välistä viestintää edistävänä työkaluna.