999 resultados para 372.4[823]
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) with their band gap energies around 1.45 eV and 1.0 eV, respectively, can be used as the absorber layer in thin film solar cells. By using a mixture of both compounds, Cu2ZnSn(S,Se)4 (CZTSSe), a band gap tuning may be possible. The latter material has already shown promising results such as solar cell efficiencies up to 10.1%. In this work, CZTSSe thin films were grown in order to study its structure and to establish the best growth precursors. SEM micrographs reveal an open columnar structure for most samples and EDS composition profiling of the cross sections show different selenium gradients. X-ray diffractograms show different shifts of the kesterite/stannite (1 1 2) peak, which indicate the presence of CZTSSe. From Raman scattering analysis, it was concluded that all samples had traces of CZTS and CZTSSe. The composition of the CZTSSe layer was estimated using X-ray diffraction and Raman scattering and both results were compared. It was concluded that Se diffused more easily in precursors with ternary Cu–Sn–S phases and metallic Zn than in precursors with ZnS and/or CZTS already formed. It was also showed that a combination of X-ray diffraction and Raman scattering can be used to estimate the ratio of S per Se in CZTSSe samples.
Resumo:
Low-rate low-power consumption and low-cost communication are the key points that lead to the specification of the IEEE 802.15.4 standard. This paper overviews the technical features of the physical layer and the medium access control sublayer mechanisms of the IEEE 802.15.4 protocol that are most relevant for wireless sensor network applications. We also discuss the ability of IEEE 802.15.4 to fulfil the requirements of wireless sensor network applications.
Resumo:
Este é o quarto volume dos Anais da Unidade de Investigação Educação e Desenvolvimento (UIED) e nele se apresentam as principais publicações dos diversos programas e linhas de investigação referentes à actividade do ano de 2003. Uma visão do índice dá alguma medida do âmbito dos trabalhos desenvolvidos nesta unidade e que abrangem novas tendências do pensamento educativo; políticas educativas; educação em ciência; educação e mundo do trabalho; educação e novas tecnologias; educação, desenvolvimento pessoal e sucesso académico e educação e enfermagem. Uma informação complementar sobre a organização da UIED, bem como dos trabalhos de Teses de Doutoramento e de Mestrado realizados no Departamento de Ciências Sociais Aplicadas da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa com o apoio de projectos de investigação desenvolvidos na Unidade, é também inserida neste volume, tal como ocorreu em volumes anteriores. O Coordenador Científico: Prof. Doutor José Manuel Matos
Resumo:
The IEEE 802.15.4 standard provides appealing features to simultaneously support real-time and non realtime traffic, but it is only capable of supporting real-time communications from at most seven devices. Additionally, it cannot guarantee delay bounds lower than the superframe duration. Motivated by this problem, in this paper we propose an Explicit Guaranteed time slot Sharing and Allocation scheme (EGSA) for beacon-enabled IEEE 802.15.4 networks. This scheme is capable of providing tighter delay bounds for real-time communications by splitting the Contention Free access Period (CFP) into smaller mini time slots and by means of a new guaranteed bandwidth allocation scheme for a set of devices with periodic messages. At the same the novel bandwidth allocation scheme can maximize the duration of the CFP for non real-time communications. Performance analysis results show that the EGSA scheme works efficiently and outperforms competitor schemes both in terms of guaranteed delay and bandwidth utilization.
Resumo:
São vários os autores que referem a importância do desenvolvimento do pensamento algébrico desde os anos iniciais, nomeadamente desde o pré-escolar. Para Threlfall(1999), o estudo dos padrões constitui um veículo privilegiado para o fazer. Neste artigo, apresentam-se algumas das tarefas que foram propostas a um grupo de crianças de 4 anos, centradas em padrões de repetição, num contexto de exploração da literatura infantil, tendo surgido na sequência das histórias «A lagartinha comilona» e «A casa da Mosca Fosca». Todas as tarefas foram iniciadas sempre com a leitura da história respetiva, em grande grupo. As tarefas foram realizadas no âmbito da tese de mestrado da primeira autora (Serra, 2014), educadora das crianças, sendo que os nomes das crianças aqui referidos são fictícios, de modo a garantir o seu anonimato.
Resumo:
Introdução – O efeito de êmbolo é um dos principais problemas relacionados com a eficácia de uma prótese. Uma diminuição do mesmo pode levar a uma marcha mais natural através do aumento da propriocetividade. Objetivos – Verificar se existe diferença de valores do efeito de êmbolo entre vários sistemas de suspensão para próteses transtibiais com a utilização de Liners e testar a aplicação de testes de imagiologia na análise da melhor solução protésica para um determinado indivíduo. Metodologia – Foi obtida uma radiografia da prótese em carga na posição ortostática, mantendo o peso do indivíduo igualmente distribuído pelos dois pés. Seguidamente foi realizada outra radiografia no plano sagital com o joelho com 30° de flexão, com a prótese suspensa e um peso de 5kg aplicado na extremidade distal da mesma durante 30 seg. Através destes dois exames efetuaram-se as medições do êmbolo para cada tipo de sistema de suspensão. Resultados – Dos quatro sistemas estudados apenas três apresentam valores de êmbolo, visto que um dos sistemas não criou suspensão suficiente para suportar o peso colocado na extremidade distal da prótese. Através das medições realizadas nos exames imagiológicos dos três sistemas pudemos encontrar variações de efeito de êmbolo que vão dos 47,91mm aos 72,55mm. Conclusão – Através da realização do estudo imagiológico verificaram-se diferenças a nível do efeito de êmbolo nos vários sistemas de suspensão, provando que esta é uma ferramenta viável na avaliação do mesmo. Também através da análise dos resultados ficou notório que o sistema de suspensão Vacuum Assisted Suspention System (VASS) é o que apresenta menos êmbolo.
Resumo:
Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.
Resumo:
Timeliness guarantee is an important feature of the recently standardized IEEE 802.15.4 protocol, turning it quite appealing for Wireless Sensor Network (WSN) applications under timing constraints. When operating in beacon-enabled mode, this protocol allows nodes with real-time requirements to allocate Guaranteed Time Slots (GTS) in the contention-free period. The protocol natively supports explicit GTS allocation, i.e. a node allocates a number of time slots in each superframe for exclusive use. The limitation of this explicit GTS allocation is that GTS resources may quickly disappear, since a maximum of seven GTSs can be allocated in each superframe, preventing other nodes to benefit from guaranteed service. Moreover, the GTS may be underutilized, resulting in wasted bandwidth. To overcome these limitations, this paper proposes i-GAME, an implicit GTS Allocation Mechanism in beacon-enabled IEEE 802.15.4 networks. The allocation is based on implicit GTS allocation requests, taking into account the traffic specifications and the delay requirements of the flows. The i-GAME approach enables the use of one GTS by multiple nodes, still guaranteeing that all their (delay, bandwidth) requirements are satisfied. For that purpose, we propose an admission control algorithm that enables to decide whether to accept a new GTS allocation request or not, based not only on the remaining time slots, but also on the traffic specifications of the flows, their delay requirements and the available bandwidth resources. We show that our approach improves the bandwidth utilization as compared to the native explicit allocation mechanism defined in the IEEE 802.15.4 standard. We also present some practical considerations for the implementation of i-GAME, ensuring backward compatibility with the IEEE 801.5.4 standard with only minor add-ons. Finally, an experimental evaluation on a real system that validates our theoretical analysis and demonstrates the implementation of i-GAME is also presented
Resumo:
The simulation analysis is important approach to developing and evaluating the systems in terms of development time and cost. This paper demonstrates the application of Time Division Cluster Scheduling (TDCS) tool for the configuration of IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs using the simulation analysis, as an illustrative example that confirms the practical applicability of the tool. The simulation study analyses how the number of retransmissions impacts the reliability of data transmission, the energy consumption of the nodes and the end-to-end communication delay, based on the simulation model that was implemented in the Opnet Modeler. The configuration parameters of the network are obtained directly from the TDCS tool. The simulation results show that the number of retransmissions impacts the reliability, the energy consumption and the end-to-end delay, in a way that improving the one may degrade the others.
Resumo:
The IEEE 802.15.4 is the most widespread used protocol for Wireless Sensor Networks (WSNs) and it is being used as a baseline for several higher layer protocols such as ZigBee, 6LoWPAN or WirelessHART. Its MAC (Medium Access Control) supports both contention-free (CFP, based on the reservation of guaranteed time-slots GTS) and contention based (CAP, ruled by CSMA/CA) access, when operating in beacon-enabled mode. Thus, it enables the differentiation between real-time and best-effort traffic. However, some WSN applications and higher layer protocols may strongly benefit from the possibility of supporting more traffic classes. This happens, for instance, for dense WSNs used in time-sensitive industrial applications. In this context, we propose to differentiate traffic classes within the CAP, enabling lower transmission delays and higher success probability to timecritical messages, such as for event detection, GTS reservation and network management. Building upon a previously proposed methodology (TRADIF), in this paper we outline its implementation and experimental validation over a real-time operating system. Importantly, TRADIF is fully backward compatible with the IEEE 802.15.4 standard, enabling to create different traffic classes just by tuning some MAC parameters.
Resumo:
The IEEE 802.15.4/ZigBee protocols are gaining increasing interests in both research and industrial communities as candidate technologies for Wireless Sensor Network (WSN) applications. In this paper, we present an open-source implementation of the IEEE 802.15.4/Zigbee protocol stack under the TinyOS operating system for the MICAz motes. This work has been driven by the need for an open-source implementation of the IEEE 802.15.4/ZigBee protocols, filling a gap between some newly released complex C implementations and black-box implementations from different manufacturers. In addition, we share our experience on the challenging problem that we have faced during the implementation of the protocol stack on the MICAz motes. We strongly believe that this open-source implementation will potentiate research works on the IEEE 802.15.4/Zigbee protocols allowing their demonstration and validation through experimentation.
Resumo:
While the IEEE 802.15.4/Zigbee protocol stack is being considered as a promising technology for low-cost low-power Wireless Sensor Networks (WSNs), several issues in the standard specifications are still open. One of those ambiguous issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for ensuring QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multihop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes a synchronization mechanism based on Time Division Beacon Scheduling to construct cluster-tree WSNs. We also propose a methodology for an efficient duty cycle management in each router (cluster-head) of a cluster-tree WSN that ensures the fairest use of bandwidth resources. The feasibility of the proposal is clearly demonstrated through an experimental test bed based on our own implementation of the IEEE 802.15.4/Zigbee protocol.
Resumo:
The IEEE 802.15.4 protocol has the ability to support time-sensitive Wireless Sensor Network (WSN) applications due to the Guaranteed Time Slot (GTS) Medium Access Control mechanism. Recently, several analytical and simulation models of the IEEE 802.15.4 protocol have been proposed. Nevertheless, currently available simulation models for this protocol are both inaccurate and incomplete, and in particular they do not support the GTS mechanism. In this paper, we propose an accurate OPNET simulation model, with focus on the implementation of the GTS mechanism. The motivation that has driven this work is the validation of the Network Calculus based analytical model of the GTS mechanism that has been previously proposed and to compare the performance evaluation of the protocol as given by the two alternative approaches. Therefore, in this paper we contribute an accurate OPNET model for the IEEE 802.15.4 protocol. Additionally, and probably more importantly, based on the simulation model we propose a novel methodology to tune the protocol parameters such that a better performance of the protocol can be guaranteed, both concerning maximizing the throughput of the allocated GTS as well as concerning minimizing frame delay.
Resumo:
The recently standardized IEEE 802.15.4/Zigbee protocol stack offers great potentials for ubiquitous and pervasive computing, namely for Wireless Sensor Networks (WSNs). However, there are still some open and ambiguous issues that turn its practical use a challenging task. One of those issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes two collision-free beacon frame scheduling schemes. We strongly believe that the results provided in this paper trigger a significant step towards the practical and efficient use of IEEE 802.15.4/Zigbee cluster-tree networks.