974 resultados para 357-M0076A
Resumo:
The EU has adopted the European Farmland Bird Index (EFBI) as a Structural and Sustainable Development Indicator and a proxy for wider biodiversity health on farmland. Changes in the EFBI over coming years are likely to reflect how well agri-environment schemes (AES), funded under Pillar 2 (Axis 2) of the Common Agricultural Policy, have been able to offset the detrimental impacts of past agricultural changes and deliver appropriate hazard prevention or risk mitigation strategies alongside current and future agricultural change. The delivery of a stable or positive trend in the EFBI will depend on the provision of sufficient funding to appropriately designed and implemented AES. We present a trait-based framework which can be used to quantify the detrimental impact of land-use change on farmland bird populations across Europe. We use the framework to show that changes in resource availability within the cropped area of agricultural landscapes have been the key driver of current declines in farmland bird populations. We assess the relative contribution of each Member State to the level of the EFBI and explore the relationship between risk contribution and Axis 2 funding allocation. Our results suggest that agricultural changes in each Member State do not have an equal impact on the EFBI, with land-use and management change in Spain having a particularly large influence on its level, and that funding is poorly targeted with respect to biodiversity conservation needs. We also use the framework to predict the EFBI in 2020 for a number of land-use change scenarios. This approach can be used to guide both the development and implementation of targeted AES and the objective distribution of Pillar 2 funds between and within Member States. We hope that this will contribute to the cost-effective and efficient delivery of Rural Development strategy and biodiversity conservation targets.
Resumo:
The ability to resist or avoid natural enemy attack is a critically important insect life history trait, yet little is understood of how these traits may be affected by temperature. This study investigated how different genotypes of the pea aphid Acyrthosiphon pisum Harris, a pest of leguminous crops, varied in resistance to three different natural enemies (a fungal pathogen, two species of parasitoid wasp and a coccinellid beetle), and whether expression of resistance was influenced by temperature. Substantial clonal variation in resistance to the three natural enemies was found. Temperature influenced the number of aphids succumbing to the fungal pathogen Erynia neoaphidis Remaudiere & Hermebert, with resistance increasing at higher temperatures (18 vs. 28degreesC). A temperature difference of 5degreesC (18 vs. 23degreesC) did not affect the ability of A. pisum to resist attack by the parasitoids Aphidius ervi Haliday and A. eadyi Stary Gonzalez & Hall. Escape behaviour from foraging coccinellid beetles (Hippodamia convergens Guerin-Meneville) was not directly influenced by aphid clone or temperature (16 vs. 21degreesC). However, there were significant interactions between clone and temperature (while most clones did not respond to temperature, one was less likely to escape at 16degreesC), and between aphid clone and ladybird presence (some clones showed greater changes in escape behaviour in response to the presence of foraging coccinellids than others). Therefore, while larger temperature differences may alter interactions between Acyrthosiphon pisum and an entomopathogen, there is little evidence to suggest that smaller changes in temperature will alter pea aphid-natural enemy interactions.
Resumo:
The surface geometries of the p (root7- x root7)R19degrees-(4CO) and c(2 x 4)-(2CO) layers on Ni {111} and the clean Ni {111} surface were determined by low energy electron diffraction structure analysis. For the clean surface small but significant contractions of d(12) and d(23) (both 2.02 Angstrom) were found with respect to the bulk interlayer distance (2.03 Angstrom). In the c(2 x 4)-(2CO) structure these distances are expanded, with values of d(12) = 2.08 Angstrom and d(23) = 2.06 Angstrom and buckling of 0.08 and 0.02 Angstrom, respectively, in the first and second layer. CO resides near hcp and fcc hollow sites with relatively large lateral shifts away from the ideal positions leading to unequal C-Ni bond lengths between 1.76 and 1.99 Angstrom. For the p(root7- x root7-)R19'-(4CO) layer two best fit geometries were found, which agree in most of their atomic positions, except for one out of four CO molecules, which is either near atop or between bridge and atop. The remaining three molecules reside near hcp and fcc sites, again with large lateral deviations from their ideal positions. The average C Ni bond length for these molecules is, however, the same as for CO on hollow sites at low coverage. The average CNi bond length at hollow sites, the interlayer distances, and buckling in the first Ni layer are similar to the c(2 x 4)(2CO) geometry, only the buckling in the second layer (0.08 Angstrom) is significantly larger. Lateral and vertical shifts of the Ni atoms in the first layer lead to unsymmetric environments for the CO molecules, which can be regarded as an imprint of the chiral p(root7- x root7-)R19degrees lattice geometry onto the substrate.
Resumo:
Studies have shown that natural ultraviolet (UV) radiation increases secondary products such as phenolics but can significantly inhibit biomass accumulation in lettuce plants. In the work presented here, the effect of UV radiation on phenolic concentration and biomass accumulation was assessed in relation to photosynthetic performance in red and green lettuce types. Lettuce plants in polythene clad tunnels were exposed to either ambient (UV transparent film) or UV-free conditions (UV blocking film). The study tested whether growth reduction in lettuce plants exposed to natural UV radiation is because of inhibition of photosynthesis by direct damage to the photosynthetic apparatus or by internal shading by anthocyanins. Ambient levels of UV radiation did not limit the efficiency of photosynthesis suggesting that phenolic compounds may effectively protect the photosynthetic apparatus. Growth inhibition does, however, occur in red lettuce and could be explained by the high metabolic cost of phenolic compounds for UV protection. From a commercial perspective, UV transparent and UV blocking films offer opportunities because, in combination, they could increase plant quality as well as productivity. Growing plants continuously under a UV blocking film, and then 6 days before the final harvest transferring them to a UV transparent film, showed that high yields and high phytochemical content can be achieved complementarily.
Resumo:
The forelimbs of higher vertebrates are composed of two portions: the appendicular region (stylopod, zeugopod and autopod) and the less prominent proximal girdle elements (scapula and clavicle) that brace the limb to the main trunk axis. We show that the formation of the muscles of the proximal limb occurs through two distinct mechanisms. The more superficial girdle muscles (pectoral and latissimus dorsi) develop by the “In–Out” mechanism whereby migration of myogenic cells from the somites into the limb bud is followed by their extension from the proximal limb bud out onto the thorax. In contrast, the deeper girdle muscles (e.g. rhomboideus profundus and serratus anterior) are induced by the forelimb field which promotes myotomal extension directly from the somites. Tbx5 inactivation demonstrated its requirement for the development of all forelimb elements which include the skeletal elements, proximal and distal muscles as well as the sternum in mammals and the cleithrum of fish. Intriguingly, the formation of the diaphragm musculature is also dependent on the Tbx5 programme. These observations challenge our classical views of the boundary between limb and trunk tissues. We suggest that significant structures located in the body should be considered as components of the forelimb.
Resumo:
In this paper I give a critical overview of the views of the main Rational Intuitionists from 18th to 20th century.
Resumo:
Polymer-stabilised liquid crystals are systems in which a small amount of monomer is dissolved within a liquid crystalline host, and then polymerised in situ to produce a network. The progress of the polymerisation, performed within electro-optic cells, was studied by establishing an analytical method novel to these systems. Samples were prepared by photopolymerisation of the monomer under well-defined reaction conditions; subsequent immersion in acetone caused the host and any unreacted monomer to dissolve. High performance liquid chromatography was used to separate and detect the various solutes in the resulting solutions, enabling the amount of unreacted monomer for a given set of conditions to be quantified. Longer irradiations cause a decrease in the proportion of unreacted monomer since more network is formed, while a more uniform LC director alignment (achieved by decreasing the sample thickness) or a higher level of order (achieved by decreasing the polymerisation temperature) promotes faster reactions.
Resumo:
The collection of wind speed time series by means of digital data loggers occurs in many domains, including civil engineering, environmental sciences and wind turbine technology. Since averaging intervals are often significantly larger than typical system time scales, the information lost has to be recovered in order to reconstruct the true dynamics of the system. In the present work we present a simple algorithm capable of generating a real-time wind speed time series from data logger records containing the average, maximum, and minimum values of the wind speed in a fixed interval, as well as the standard deviation. The signal is generated from a generalized random Fourier series. The spectrum can be matched to any desired theoretical or measured frequency distribution. Extreme values are specified through a postprocessing step based on the concept of constrained simulation. Applications of the algorithm to 10-min wind speed records logged at a test site at 60 m height above the ground show that the recorded 10-min values can be reproduced by the simulated time series to a high degree of accuracy.
Resumo:
Background and Aims Forest trees directly contribute to carbon cycling in forest soils through the turnover of their fine roots. In this study we aimed to calculate root turnover rates of common European forest tree species and to compare them with most frequently published values. Methods We compiled available European data and applied various turnover rate calculation methods to the resulting database. We used Decision Matrix and Maximum-Minimum formula as suggested in the literature. Results Mean turnover rates obtained by the combination of sequential coring and Decision Matrix were 0.86 yr−1 for Fagus sylvatica and 0.88 yr−1 for Picea abies when maximum biomass data were used for the calculation, and 1.11 yr−1 for both species when mean biomass data were used. Using mean biomass rather than maximum resulted in about 30 % higher values of root turnover. Using the Decision Matrix to calculate turnover rate doubled the rates when compared to the Maximum-Minimum formula. The Decision Matrix, however, makes use of more input information than the Maximum-Minimum formula. Conclusions We propose that calculations using the Decision Matrix with mean biomass give the most reliable estimates of root turnover rates in European forests and should preferentially be used in models and C reporting.
Resumo:
This article examines the role of communities in carbon management as it relates to both climate change and energy policy at the local level and as a seedbed for grassroots activity. The article considers some of the implications of recent policy developments, particularly the ways in which the ‘lines of responsibility’ are now being drawn at the local level. Drawing upon in-depth interviews with local authorities in the UK and the USA, the article examines the political distinctions that are evident between the two situations and the ramifications of these for practical community engagement in carbon management at the local level. Community engagement is likely to be central to the delivery of CO2 reductions, but evidence so far points to a series of challenges that will require a greater emphasis on partnership working between community groups and formal decision-making bodies.