952 resultados para 230109 Functional Analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell cultures of Mandevilla velutina have proved to be an interesting production system for biomass and secondary metabolites able to inhibit the hypotensive activity of bradykinin, a nonapeptide generated in plasma during tissue trauma. The crude ethyl acetate extract of cultured cells contains about 31- to 79-fold more potent anti-bradykinin compounds (e.g., velutinol A) than that obtained with equivalent extracts of tubers. Somaclonal variation may be an explanation for the wide range of inhibitor activity found in the cell cultures. The heterogeneity concerning morphology, differentiation, carbon dissimilation, and velutinol A production in M. velutina cell cultures is reported. Cell cultures showed an asynchronous growth and cells in distinct developmental stages. Meristematic cells were found as the major type, with several morphological variations. Cell aggregates consisting only of meristematic cells, differentiated cells containing specialized cell structures such as functional chloroplasts (cytodifferentiation) and cells with embryogenetic characteristics were observed. The time course for sucrose metabolism indicated cell populations with significant differences in growth and metabolic rates, with the highest biomass-producing cell line showing a cell cycle 60% shorter and a metabolic rate 33.6% higher than the control (F2 cell population). MALDI-TOF mass spectrometric analysis of velutinol A in selected cell lines demonstrated the existence of velutinol A producing and nonproducing somaclones. These results point to a high genetic heterogeneity in general and also in terms of secondary metabolite content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconstitution of membrane proteins into lipid bilayers is a powerful tool to analyze functional as well as structural areas of membrane protein research. First, the proper incorporation of a purified membrane protein into closed lipid vesicles, to produce proteoliposomes, allows the investigation of transport and/or catalytic properties of any membrane protein without interference by other membrane components. Second, the incorporation of a large amount of membrane proteins into lipid bilayers to grow crystals confined to two dimensions has recently opened a new way to solve their structure at high resolution using electron crystallography. However, reconstitution of membrane proteins into functional proteoliposomes or 2-D crystallization has been an empirical domain, which has been viewed for a long time more like "black magic" than science. Nevertheless, in the last ten years, important progress has been made in acquiring knowledge of lipid-protein-detergent interactions and has permitted to build upon a set of basic principles that has limited the empirical approach of reconstitution experiments. Reconstitution strategies have been improved and new strategies have been developed, facilitating the success rate of proteoliposome formation and 2-D crystallization. This review deals with the various strategies available to obtain proteoliposomes and 2-D crystals from detergent-solubilized proteins. It gives an overview of the methods that have been applied, which may be of help for reconstituting more proteins into lipid bilayers in a form suitable for functional studies at the molecular level and for high-resolution structural analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The etiology of functional dyspepsia is not known. The objective of the present study was to determine the characteristics of functional dyspepsia in Western Turkey. We divided 900 patients with functional dyspepsia into three subgroups according to symptoms: ulcer-like (UL), 321 (35.6%), motility disorder-like (ML), 281 (31.2%), and the combination (C) of these symptoms, 298 (33.1%). All patients were submitted to endoscopic evaluation, with two biopsies taken from the cardia and corpus, and four from the antrum of the stomach. All biopsy samples were studied for Helicobacter pylori (Hp) density, chronic inflammation, activity, intestinal metaplasia, atrophy, and the presence of lymphoid aggregates by histological examination. One antral biopsy was used for the rapid urease test. Tissue cagA status was determined by PCR from an antral biopsy specimen by a random sampling method. We also determined the serum levels of tumor necrosis factor-alpha (TNF-alpha) and gastrin by the same method. Data were analyzed statistically by the Kolmogorov-Smirnov test and by analysis of variance. Hp and cagA positivity was significantly higher in the UL subgroup than in the others. The patients in the ML subgroup had the lowest Hp and cagA positivity and Hp density. The ML subgroup also showed the lowest level of Hp-induced inflammation among all subgroups. The serum levels of TNF-alpha and gastrin did not reveal any difference between groups. Our findings show a poor association of Hp with the ML subgroup of functional dyspepsia, but a stronger association with the UL and C subgroups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to manufacture metal parts layer by layer by assist of laser beam. The development of the technology from building just prototype parts to functional parts is due to design flexibility. And also possibility to manufacture tailored and optimised components in terms of performance and strength to weight ratio of final parts. The study of energy and raw material consumption in LAM is essential as it might facilitate the adoption and usage of the technique in manufacturing industries. The objective this thesis was find the impact of LAM on environmental and economic aspects and to conduct life cycle inventory of CNC machining and LAM in terms of energy and raw material consumption at production phases. Literature overview in this thesis include sustainability issues in manufacturing industries with focus on environmental and economic aspects. Also life cycle assessment and its applicability in manufacturing industry were studied. UPLCI-CO2PE! Initiative was identified as mostly applied exiting methodology to conduct LCI analysis in discrete manufacturing process like LAM. Many of the reviewed literature had focused to PBF of polymeric material and only few had considered metallic materials. The studies that had included metallic materials had only measured input and output energy or materials of the process and compared to different AM systems without comparing to any competitive process. Neither did any include effect of process variation when building metallic parts with LAM. Experimental testing were carried out to make dissimilar samples with CNC machining and LAM in this thesis. Test samples were designed to include part complexity and weight reductions. PUMA 2500Y lathe machine was used in the CNC machining whereas a modified research machine representing EOSINT M-series was used for the LAM. The raw material used for making the test pieces were stainless steel 316L bar (CNC machined parts) and stainless steel 316L powder (LAM built parts). An analysis of power, time, and the energy consumed in each of the manufacturing processes on production phase showed that LAM utilises more energy than CNC machining. The high energy consumption was as result of duration of production. Energy consumption profiles in CNC machining showed fluctuations with high and low power ranges. LAM energy usage within specific mode (standby, heating, process, sawing) remained relatively constant through the production. CNC machining was limited in terms of manufacturing freedom as it was not possible to manufacture all the designed sample by machining. And the one which was possible was aided with large amount of material removed as waste. Planning phase in LAM was shorter than in CNC machining as the latter required many preparation steps. Specific energy consumption (SEC) were estimated in LAM based on the practical results and assumed platform utilisation. The estimated platform utilisation showed SEC could reduce when more parts were placed in one build than it was in with the empirical results in this thesis (six parts).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inorganic pyrophosphatases (PPases) are enzymes that hydrolyze pyrophosphate (PPi)which is produced as a byproduct in many important growth related processes e.g. in the biosynthesis of DNA, proteins and lipids. PPases can be either soluble or membranebound. Membrane-bound PPases (mPPases) are ion transporters that couple the energy released during PPi hydrolysis to Na+ or H+ transport. When I started the project, only three Na+-transporting mPPases were known to exist. In this study, I aimed to confirm if Na+-transport is a common function of mPPases. Furthermore, the amino acid residues responsible for determining the transporter specificity were unknown. I constructed a phylogenetic tree for mPPases and selected the representative bacterial and archaeal mPPases to be investigated. I expressed different prokaryotic mPPases in Escherichia coli, isolated these as inverted membrane vesicles and characterized their functions. In the first project I identified four new Na+-PPases, two K+-dependent H+-PPases and one K+-independent mPPase. The residues determining the transporter specificity were identified by site-directed mutagenesis. I showed that the conserved glutamate residues are important for specificity, though are not the only residues that influence it. This research clarified the ion transport specificities throughout the mPPase phylogenetic tree, and revealed that Na+ transport is a widespread function of mPPases. In addition, it became clear that the transporter specificity can be predicted from the amino acid sequence in combination with a phylogenetic analysis. In the second project, I identified a novel class of mPPases, which is capable of transporting both Na+ and H+ ions and is mainly found in bacteria of the human gastrointestinal tract. The physiological role of these novel enzymes may be to help the bacteria survive in the demanding conditions of the host. In the third project, I characterized the Chlorobium limicola Na+-PPase and found that this and related mPPases are able to transport H+ ions at subphysiological Na+ concentrations. In addition, the H+-transport activity was shown to be a common function of all studied Na+-PPases at low Na+ concentrations. I observed that mutating gate-lysine to asparagine eliminated the H+ but not the Na+ ion transport function, indicating the important role of the residue in the transport of H+. In the fourth project, I characterized the unknown and evolutionary divergent mPPase clade of the phylogenetic tree. The enzymes belonging to this clade are able to transport H+ ions and, based on their sequence, were expected to be K+- and Na+-independent. The sequences of membrane-bound PPase are usually highly conserved, but the enzymes belonging to this clade are more divergent and usually contain 100−150 extra amino acid residues compared to other known mPPases. Despite the vast sequence differences, these mPPases have the full set of important residues and, surprisingly, are regulated by Na+ and K+ ions. These enzymes are mainly of bacterial origin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Almost identical polyglutamine-containing proteins with unknown structures have been found in human, mouse and rat genomes (GenBank AJ277365, AF525300, AY879229). We infer that an identical new gene (RING) finger domain of real interest is located in each C-terminal segment. A three-dimensional (3-D) model was generated by remote homology modeling and the functional implications are discussed. The model consists of 65 residues from terminal position 707 to 772 of the human protein with a total length of 796 residues. The 3-D model predicts a ubiquitin-protein ligase (E3) as a binding site for ubiquitin-conjugating enzyme (E2). Both enzymes are part of the ubiquitin pathway to label unwanted proteins for subsequent enzymatic degradation. The molecular contact specificities are suggested for both the substrate recognition and the residues at the possible E2-binding surface. The predicted structure, of a ubiquitin-protein ligase (E3, enzyme class number 6.3.2.19, CATH code 3.30.40.10.4) may contribute to explain the process of ubiquitination. The 3-D model supports the idea of a C3HC4-RING finger with a partially new pattern. The putative E2-binding site is formed by a shallow hydrophobic groove on the surface adjacent to the helix and one zinc finger (L722, C739, P740, P741, R744). Solvent-exposed hydrophobic amino acids lie around both zinc fingers (I717, L722, F738, or P765, L766, V767, V733, P734). The 3-D structure was deposited in the protein databank theoretical model repository (2B9G, RCSB Protein Data Bank, NJ).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyketides are a diverse group of natural products produced in many bacteria, fungi and plants. These metabolites have diverse biological activities and several members of this group are in clinical use as antibiotics, anticancer agents, antifungals and immunosuppressants. The different polyketides are produced by polyketide synthases, which catalyze the condensation of extender units into various polyketide scaffolds. After the biosynthesis of the polyketide backbone, more versatility is created to the molecule by tailoring enzymes catalyzing for instance hydroxylations, methylations and glycosylations. Flavoprotein monooxygenases (FPMO) and short-chain alcohol dehydrogenases/reductases (SDR) are two enzyme families that catalyze unusual tailoring reactions in the biosynthesis of natural products. In the experimental section, functions of homologous FPMO and SDR tailoring enzymes from five different angucycline pathways were studied in vitro. The results revealed how different angucyclinones are produced from a common intermediate and that FPMO JadH and SDR LanV are responsible for the divergence of jadomycins and landomycins, respectively, from other angucyclines. Structural studies of these tailoring enzymes revealed differences between homologous enzymes and enabled the use of structure-based protein engineering. Mutagenesis experiments gave important information about the enzymes behind the evolution of distinct angucycline metabolites. These experiments revealed a correlation between the substrate inhibition and bi-functionality in JadH homologue PgaE. In the case of LanV, analysis of mutagenesis results revealed that the difference between the stereospecificities of LanV and its homologues CabV and UrdMred is unexpectedly related to the conformation of the substrate rather than to the structure of the enzyme. Altogether, the results presented here have improved our knowledge about different steps of angucycline biosynthesis and the reaction mechanisms used by the tailoring enzymes behind these steps. This information can hopefully be used to modify these enzymes to produce novel metabolites, which have new biological targets or possess novel modes-of-action. The understanding of these unusual enzyme mechanisms is also interesting to enzymologists outside the field of natural product research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The association of plasma interleukin-6 (IL-6) levels, muscle strength and functional capacity was investigated in a cross-sectional study of community-dwelling elderly women from Belo Horizonte, Brazil. Elderly people who present controlled chronic diseases with no negative impact on physical, psychosocial and mental functionality are considered to be community-dwelling. Psychological and social stress due to unsuccessfully aging can represent a risk for immune system disfunctions. IL-6 levels, isokinetic muscle strength of knee flexion/extension, and functional tests to determine time required to rise from a chair and gait velocity were measured in 57 participants (71.21 ± 7.38 years). Serum levels of IL-6 were measured in duplicate and were performed within one single assay (mouse monoclonal antibody against IL-6; High-Sensitivity, Quantikine®, R & D Systems, USA; intra-assay coefficient of variance = 6.9-7.4%; interassay coefficient of variance = 9.6-6.5%; sensitivity = 0.016-0.110 pg/mL; mean = 0.039 pg/mL). Muscle strength was assessed with the isokinetic dynamometer Biodex System 3 Pro®. After the Shapiro-Wilk normality test was applied, correlations were investigated using Spearman and Kruskal-Wallis tests. Post hoc analysis was performed using the Dunn test. A significant negative correlation was observed between plasma IL-6 levels (1.95 ± 1.77 pg/mL) and muscle strength for knee flexion (70.70 ± 21.14%; r = -0.265; P = 0.047) and extension (271.84 ± 67.85%; r = -0.315; P = 0.017). No significant correlation was observed between IL-6 levels and the functional tests (time to rise from a chair = 14.65 ± 2.82 s and gait velocity = 0.95 ± 0.14 m/s). These results suggest that IL-6 is associated with reduced muscle strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simultaneous measurements of EEG-functional magnetic resonance imaging (fMRI) combine the high temporal resolution of EEG with the distinctive spatial resolution of fMRI. The purpose of this EEG-fMRI study was to search for hemodynamic responses (blood oxygen level-dependent - BOLD responses) associated with interictal activity in a case of right mesial temporal lobe epilepsy before and after a successful selective amygdalohippocampectomy. Therefore, the study found the epileptogenic source by this noninvasive imaging technique and compared the results after removing the atrophied hippocampus. Additionally, the present study investigated the effectiveness of two different ways of localizing epileptiform spike sources, i.e., BOLD contrast and independent component analysis dipole model, by comparing their respective outcomes to the resected epileptogenic region. Our findings suggested a right hippocampus induction of the large interictal activity in the left hemisphere. Although almost a quarter of the dipoles were found near the right hippocampus region, dipole modeling resulted in a widespread distribution, making EEG analysis too weak to precisely determine by itself the source localization even by a sophisticated method of analysis such as independent component analysis. On the other hand, the combined EEG-fMRI technique made it possible to highlight the epileptogenic foci quite efficiently.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to develop a classifier able to discriminate between healthy controls and dyspeptic patients by analysis of their electrogastrograms. Fifty-six electrogastrograms were analyzed, corresponding to 42 dyspeptic patients and 14 healthy controls. The original signals were subsampled, filtered and divided into the pre-, post-, and prandial stages. A time-frequency transformation based on wavelets was used to extract the signal characteristics, and a special selection procedure based on correlation was used to reduce their number. The analysis was carried out by evaluating different neural network structures to classify the wavelet coefficients into two groups (healthy subjects and dyspeptic patients). The optimization process of the classifier led to a linear model. A dimension reduction that resulted in only 25% of uncorrelated electrogastrogram characteristics gave 24 inputs for the classifier. The prandial stage gave the most significant results. Under these conditions, the classifier achieved 78.6% sensitivity, 92.9% specificity, and an error of 17.9 ± 6% (with a 95% confidence level). These data show that it is possible to establish significant differences between patients and normal controls when time-frequency characteristics are extracted from an electrogastrogram, with an adequate component reduction, outperforming the results obtained with classical Fourier analysis. These findings can contribute to increasing our understanding of the pathophysiological mechanisms involved in functional dyspepsia and perhaps to improving the pharmacological treatment of functional dyspeptic patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ventilatory differences between rat strains and genders have been described but the morphology of the phrenic nerve has not been investigated in spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. A descriptive and morphometric study of the phrenic nerves of male (N = 8) and female (N = 9) SHR, and male (N = 5) and female (N = 6) WKY is presented. After arterial pressure and heart rate recordings, the phrenic nerves of 20-week-old animals were prepared for epoxy resin embedding and light microscopy. Morphometric analysis performed with the aid of computer software that took into consideration the fascicle area and diameter, as well as myelinated fiber profile and Schwann cell nucleus number per area. Phrenic nerves were generally larger in males than in females on both strains but larger in WKY compared to SHR for both genders. Myelinated fiber numbers (male SHR = 228 ± 13; female SHR = 258 ± 4; male WKY = 382 ± 23; female WKY = 442 ± 11 for proximal right segments) and density (N/mm²; male SHR = 7048 ± 537; female SHR = 10355 ± 359; male WKY = 9457 ± 1437; female WKY = 14351 ± 1448) for proximal right segments) were significantly larger in females of both groups and remarkably larger in WKY than SHR for both genders. Strain and gender differences in phrenic nerve myelinated fiber number are described for the first time in this experimental model of hypertension, indicating the need for thorough functional studies of this nerve in male and female SHR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic atrophic gastritis (CAG) is a very common gastritis and one of the major precursor lesions of gastric cancer, one of the most common cancers worldwide. The molecular mechanism underlying CAG is unclear, but its elucidation is essential for the prevention and early detection of gastric cancer and appropriate intervention. A combination of two-dimensional gel electrophoresis and mass spectrometry was used in the present study to analyze the differentially expressed proteins. Samples from 21 patients (9 females and 12 males; mean age: 61.8 years) were used. We identified 18 differentially expressed proteins in CAG compared with matched normal mucosa. Eight proteins were up-regulated and 10 down-regulated in CAG when compared with the same amounts of proteins in individually matched normal gastric mucosa. Two novel proteins, proteasome activator subunit 1 (PSME1), which was down-regulated in CAG, and ribosomal protein S12 (RPS12), which was up-regulated in CAG, were further investigated. Their expression was validated by Western blot and RT-PCR in 15 CAG samples matched with normal mucosa. The expression level of RPS12 was significantly higher in CAG than in matched normal gastric mucosa (P < 0.05). In contrast, the expression level of PSME1 in CAG was significantly lower than in matched normal gastric mucosa (P < 0.05). This study clearly demonstrated that there are some changes in protein expression between CAG and normal mucosa. In these changes, down-regulation of PSME1 and up-regulation of RPS12 could be involved in the development of CAG. Thus, the differentially expressed proteins might play important roles in CAG as functional molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We aimed to investigate miRNAs and related mRNAs through a network-based approach in order to learn the crucial role that they play in the biological processes of esophageal cancer. Esophageal squamous-cell carcinoma (ESCC) and adenocarcinoma (EAC)-related miRNA and gene expression data were downloaded from the Gene Expression Omnibus database, and differentially expressed miRNAs and genes were selected. Target genes of differentially expressed miRNAs were predicted and their regulatory networks were constructed. Differentially expressed miRNA analysis selected four miRNAs associated with EAC and ESCC, among which hsa-miR-21 and hsa-miR-202 were shared by both diseases. hsa-miR-202 was reported for the first time to be associated with esophageal cancer in the present study. Differentially expressed miRNA target genes were mainly involved in cancer-related and signal-transduction pathways. Functional categories of these target genes were related to transcriptional regulation. The results may indicate potential target miRNAs and genes for future investigations of esophageal cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study screened potential genes related to lung adenocarcinoma, with the aim of further understanding disease pathogenesis. The GSE2514 dataset including 20 lung adenocarcinoma and 19 adjacent normal tissue samples from 10 patients with lung adenocarcinoma aged 45-73 years was downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) between the two groups were screened using the t-test. Potential gene functions were predicted using functional and pathway enrichment analysis, and protein-protein interaction (PPI) networks obtained from the STRING database were constructed with Cytoscape. Module analysis of PPI networks was performed through MCODE in Cytoscape. In total, 535 upregulated and 465 downregulated DEGs were identified. These included ATP5D, UQCRC2, UQCR11 and genes encoding nicotinamide adenine dinucleotide (NADH), which are mainly associated with mitochondrial ATP synthesis coupled electron transport, and which were enriched in the oxidative phosphorylation pathway. Other DEGs were associated with DNA replication (PRIM1, MCM3, and RNASEH2A), cell surface receptor-linked signal transduction and the enzyme-linked receptor protein signaling pathway (MAPK1, STAT3, RAF1, and JAK1), and regulation of the cytoskeleton and phosphatidylinositol signaling system (PIP5K1B, PIP5K1C, and PIP4K2B). Our findings suggest that DEGs encoding subunits of NADH, PRIM1, MCM3, MAPK1, STAT3, RAF1, and JAK1 might be associated with the development of lung adenocarcinoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the structural, mechanical, diffractometric, and thermal parameters of chitosan-hydroxypropylmethylcellulose (HPMC) films plasticized with sorbitol were studied. Solutions of HPMC (2% w/v) in water and chitosan (2% w/v) in 2% acetic acid solution were prepared. The concentration of sorbitol used was 10% (w/w) to both polymers. This solutions were mixed at different proportions (100/0; 70/30; 50/50; 30/70, and 0/100) of chitosan and HPMC, respectively, and 20 mL was cast in Petri dishes for further analysis of dried films. The miscibility of polymers was assessed by X-ray diffraction, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The results obtained indicate that the films are not fully miscible at a dry state despite the weak hydrogen bonding between the polymer functional groups.