996 resultados para 2004-10-BS
Resumo:
Research in mobile ad-hoc networks has focused on situations in which nodes have no control over their movements. We investigate an important but overlooked domain in which nodes do have control over their movements. Reinforcement learning methods can be used to control both packet routing decisions and node mobility, dramatically improving the connectivity of the network. We first motivate the problem by presenting theoretical bounds for the connectivity improvement of partially mobile networks and then present superior empirical results under a variety of different scenarios in which the mobile nodes in our ad-hoc network are embedded with adaptive routing policies and learned movement policies.
Resumo:
Weighted graph matching is a good way to align a pair of shapes represented by a set of descriptive local features; the set of correspondences produced by the minimum cost of matching features from one shape to the features of the other often reveals how similar the two shapes are. However, due to the complexity of computing the exact minimum cost matching, previous algorithms could only run efficiently when using a limited number of features per shape, and could not scale to perform retrievals from large databases. We present a contour matching algorithm that quickly computes the minimum weight matching between sets of descriptive local features using a recently introduced low-distortion embedding of the Earth Mover's Distance (EMD) into a normed space. Given a novel embedded contour, the nearest neighbors in a database of embedded contours are retrieved in sublinear time via approximate nearest neighbors search. We demonstrate our shape matching method on databases of 10,000 images of human figures and 60,000 images of handwritten digits.
Resumo:
We present an algorithm to store data robustly in a large, geographically distributed network by means of localized regions of data storage that move in response to changing conditions. For example, data might migrate away from failures or toward regions of high demand. The PersistentNode algorithm provides this service robustly, but with limited safety guarantees. We use the RAMBO framework to transform PersistentNode into RamboNode, an algorithm that guarantees atomic consistency in exchange for increased cost and decreased liveness. In addition, a half-life analysis of RamboNode shows that it is robust against continuous low-rate failures. Finally, we provide experimental simulations for the algorithm on 2000 nodes, demonstrating how it services requests and examining how it responds to failures.
Resumo:
Recovering a volumetric model of a person, car, or other object of interest from a single snapshot would be useful for many computer graphics applications. 3D model estimation in general is hard, and currently requires active sensors, multiple views, or integration over time. For a known object class, however, 3D shape can be successfully inferred from a single snapshot. We present a method for generating a ``virtual visual hull''-- an estimate of the 3D shape of an object from a known class, given a single silhouette observed from an unknown viewpoint. For a given class, a large database of multi-view silhouette examples from calibrated, though possibly varied, camera rigs are collected. To infer a novel single view input silhouette's virtual visual hull, we search for 3D shapes in the database which are most consistent with the observed contour. The input is matched to component single views of the multi-view training examples. A set of viewpoint-aligned virtual views are generated from the visual hulls corresponding to these examples. The 3D shape estimate for the input is then found by interpolating between the contours of these aligned views. When the underlying shape is ambiguous given a single view silhouette, we produce multiple visual hull hypotheses; if a sequence of input images is available, a dynamic programming approach is applied to find the maximum likelihood path through the feasible hypotheses over time. We show results of our algorithm on real and synthetic images of people.
Resumo:
We consider the problem of detecting a large number of different classes of objects in cluttered scenes. Traditional approaches require applying a battery of different classifiers to the image, at multiple locations and scales. This can be slow and can require a lot of training data, since each classifier requires the computation of many different image features. In particular, for independently trained detectors, the (run-time) computational complexity, and the (training-time) sample complexity, scales linearly with the number of classes to be detected. It seems unlikely that such an approach will scale up to allow recognition of hundreds or thousands of objects. We present a multi-class boosting procedure (joint boosting) that reduces the computational and sample complexity, by finding common features that can be shared across the classes (and/or views). The detectors for each class are trained jointly, rather than independently. For a given performance level, the total number of features required, and therefore the computational cost, is observed to scale approximately logarithmically with the number of classes. The features selected jointly are closer to edges and generic features typical of many natural structures instead of finding specific object parts. Those generic features generalize better and reduce considerably the computational cost of an algorithm for multi-class object detection.
Resumo:
This article describes a model for including scene/context priors in attention guidance. In the proposed scheme, visual context information can be available early in the visual processing chain, in order to modulate the saliency of image regions and to provide an efficient short cut for object detection and recognition. The scene is represented by means of a low-dimensional global description obtained from low-level features. The global scene features are then used to predict the probability of presence of the target object in the scene, and its location and scale, before exploring the image. Scene information can then be used to modulate the saliency of image regions early during the visual processing in order to provide an efficient short cut for object detection and recognition.
Resumo:
We formulate and interpret several multi-modal registration methods in the context of a unified statistical and information theoretic framework. A unified interpretation clarifies the implicit assumptions of each method yielding a better understanding of their relative strengths and weaknesses. Additionally, we discuss a generative statistical model from which we derive a novel analysis tool, the "auto-information function", as a means of assessing and exploiting the common spatial dependencies inherent in multi-modal imagery. We analytically derive useful properties of the "auto-information" as well as verify them empirically on multi-modal imagery. Among the useful aspects of the "auto-information function" is that it can be computed from imaging modalities independently and it allows one to decompose the search space of registration problems.
Resumo:
This paper investigates how people return to information in a dynamic information environment. For example, a person might want to return to Web content via a link encountered earlier on a Web page, only to learn that the link has since been removed. Changes can benefit users by providing new information, but they hinder returning to previously viewed information. The observational study presented here analyzed instances, collected via a Web search, where people expressed difficulty re-finding information because of changes to the information or its environment. A number of interesting observations arose from this analysis, including that the path originally taken to get to the information target appeared important in its re-retrieval, whereas, surprisingly, the temporal aspects of when the information was seen before were not. While people expressed frustration when problems arose, an explanation of why the change had occurred was often sufficient to allay that frustration, even in the absence of a solution. The implications of these observations for systems that support re-finding in dynamic environments are discussed.
Resumo:
We seek to both detect and segment objects in images. To exploit both local image data as well as contextual information, we introduce Boosted Random Fields (BRFs), which uses Boosting to learn the graph structure and local evidence of a conditional random field (CRF). The graph structure is learned by assembling graph fragments in an additive model. The connections between individual pixels are not very informative, but by using dense graphs, we can pool information from large regions of the image; dense models also support efficient inference. We show how contextual information from other objects can improve detection performance, both in terms of accuracy and speed, by using a computational cascade. We apply our system to detect stuff and things in office and street scenes.
Resumo:
We give a one-pass, O~(m^{1-2/k})-space algorithm for estimating the k-th frequency moment of a data stream for any real k>2. Together with known lower bounds, this resolves the main problem left open by Alon, Matias, Szegedy, STOC'96. Our algorithm enables deletions as well as insertions of stream elements.
Resumo:
We present a constant-factor approximation algorithm for computing an embedding of the shortest path metric of an unweighted graph into a tree, that minimizes the multiplicative distortion.
Resumo:
We report a 75dB, 2.8mW, 100Hz-10kHz envelope detector in a 1.5mm 2.8V CMOS technology. The envelope detector performs input-dc-insensitive voltage-to-currentconverting rectification followed by novel nanopower current-mode peak detection. The use of a subthreshold wide- linear-range transconductor (WLR OTA) allows greater than 1.7Vpp input voltage swings. We show theoretically that this optimal performance is technology-independent for the given topology and may be improved only by spending more power. A novel circuit topology is used to perform 140nW peak detection with controllable attack and release time constants. The lower limits of envelope detection are determined by the more dominant of two effects: The first effect is caused by the inability of amplified high-frequency signals to exceed the deadzone created by exponential nonlinearities in the rectifier. The second effect is due to an output current caused by thermal noise rectification. We demonstrate good agreement of experimentally measured results with theory. The envelope detector is useful in low power bionic implants for the deaf, hearing aids, and speech-recognition front ends. Extension of the envelope detector to higher- frequency applications is straightforward if power consumption is inc
Resumo:
There is a natural norm associated with a starting point of the homogeneous self-dual (HSD) embedding model for conic convex optimization. In this norm two measures of the HSD model’s behavior are precisely controlled independent of the problem instance: (i) the sizes of ε-optimal solutions, and (ii) the maximum distance of ε-optimal solutions to the boundary of the cone of the HSD variables. This norm is also useful in developing a stopping-rule theory for HSD-based interior-point methods such as SeDuMi. Under mild assumptions, we show that a standard stopping rule implicitly involves the sum of the sizes of the ε-optimal primal and dual solutions, as well as the size of the initial primal and dual infeasibility residuals. This theory suggests possible criteria for developing starting points for the homogeneous self-dual model that might improve the resulting solution time in practice
Resumo:
The use of terms such as “Engineering Systems”, “System of systems” and others have been coming into greater use over the past decade to denote systems of importance but with implied higher complexity than for the term systems alone. This paper searches for a useful taxonomy or classification scheme for complex Systems. There are two aspects to this problem: 1) distinguishing between Engineering Systems (the term we use) and other Systems, and 2) differentiating among Engineering Systems. Engineering Systems are found to be differentiated from other complex systems by being human-designed and having both significant human complexity as well as significant technical complexity. As far as differentiating among various engineering systems, it is suggested that functional type is the most useful attribute for classification differentiation. Information, energy, value and mass acted upon by various processes are the foundation concepts underlying the technical types.
Resumo:
This Report contains the proceedings of the Fourth Phantom Users Group Workshop contains 17 papers presented October 9-12, 1999 at MIT Endicott House in Dedham Massachusetts. The workshop included sessions on, Tools for Programmers, Dynamic Environments, Perception and Cognition, Haptic Connections, Collision Detection / Collision Response, Medical and Seismic Applications, and Haptics Going Mainstream. The proceedings include papers that cover a variety of subjects in computer haptics including rendering, contact determination, development libraries, and applications in medicine, path planning, data interaction and training.