966 resultados para 2-MASS MODEL
Resumo:
The Gaussian-2, Gaussian-3, Complete Basis Set-QB3, and Complete Basis Set-APNO methods have been used to calculate geometries of neutral clusters of water, (H2O)n, where n = 2–6. The structures are in excellent agreement with those determined from experiment and those predicted from previous high-level calculations. These methods also provide excellent thermochemical predictions for water clusters, and thus can be used with confidence in evaluating the structures and thermochemistry of water clusters.
Resumo:
Doubly charged ion mass spectra of alkyl-substituted furans and pyrroles were obtained using a double-focusing magnetic mass spectrometer operated at 3.2 kV accelerating voltage. Molecular ions were the dominant species found in doubly charged spectra of lower molecular weight heterocydic compounds, whereas the spectra of the higher weight homologues were typified by abundant fragment ions from extensive decomposition. Measured doubly charged ionization and appearance energies ranged from 22.8 to 47.9 eV. Ionization energies were correlated with values calculated using self-consistent field–molecular orbital techniques. A multichannel diabatic curve-crossing model was developed to investigate the fundamental organic ion reactions responsible for development of doubly charged ion mass spectra. Probabilities for Landau–Zener type transitions between reactant and product curves were determined and used in the collision model to predict charge-transfer cross-sections, which compared favorably with experimental cross-sections obtained using time-of-flight techniques.
Resumo:
The purpose of this study was to assess the impact of body mass index (BMI) on clinical outcome of patients treated by percutaneous coronary intervention (PCI) using drug-eluting stents. Patients were stratified according to BMI as normal (<25 kg/m(2)), overweight (25 to 30 kg/m(2)), or obese (>30 kg/m(2)). At 5-year follow-up all-cause death, myocardial infarction, clinically justified target vessel revascularization (TVR), and definite stent thrombosis were assessed. A complete dataset was available in 7,427 patients, of which 45%, 22%, and 33% were classified according to BMI as overweight, obese, and normal, respectively. Mean age of patients was significantly older in those with a normal BMI (p <0.05). Incidence of diabetes mellitus, hypertension, and dyslipidemia increased as BMI increased (p <0.05). Significantly higher rates of TVR (15.3% vs 12.8%, p = 0.02) and early stent thrombosis (1.5% vs 0.9%, p = 0.04) were observed in the obese compared to the normal BMI group. No significant difference among the 3 BMI groups was observed for the composite of death/myocardial infarction/TVR or for definite stent thrombosis at 5 years, whereas the normal BMI group was at higher risk for all-cause death at 5 years (obese vs normal BMI, hazard ratio 0.74, confidence interval 0.53 to 0.99, p = 0.05; overweight vs normal BMI, hazard ratio 0.73, confidence interval 0.59 to 0.94, p = 0.01) in the multivariate Cox proportional hazard model. Age resulted in a linearly dependent covariate with BMI in the all-cause 5-year mortality multivariate model (p = 0.001). In conclusion, the "obesity paradox" observed in 5-year all-cause mortality could be explained by the higher rate of elderly patients in the normal BMI group and the existence of colinearity between BMI and age. However, obese patients had a higher rate of TVR and early stent thrombosis and a higher rate of other risk factors such as diabetes mellitus, hypertension, and hypercholesterolemia.
Resumo:
To enhance understanding of the metabolic indicators of type 2 diabetes mellitus (T2DM) disease pathogenesis and progression, the urinary metabolomes of well characterized rhesus macaques (normal or spontaneously and naturally diabetic) were examined. High-resolution ultra-performance liquid chromatography coupled with the accurate mass determination of time-of-flight mass spectrometry was used to analyze spot urine samples from normal (n = 10) and T2DM (n = 11) male monkeys. The machine-learning algorithm random forests classified urine samples as either from normal or T2DM monkeys. The metabolites important for developing the classifier were further examined for their biological significance. Random forests models had a misclassification error of less than 5%. Metabolites were identified based on accurate masses (<10 ppm) and confirmed by tandem mass spectrometry of authentic compounds. Urinary compounds significantly increased (p < 0.05) in the T2DM when compared with the normal group included glycine betaine (9-fold), citric acid (2.8-fold), kynurenic acid (1.8-fold), glucose (68-fold), and pipecolic acid (6.5-fold). When compared with the conventional definition of T2DM, the metabolites were also useful in defining the T2DM condition, and the urinary elevations in glycine betaine and pipecolic acid (as well as proline) indicated defective re-absorption in the kidney proximal tubules by SLC6A20, a Na(+)-dependent transporter. The mRNA levels of SLC6A20 were significantly reduced in the kidneys of monkeys with T2DM. These observations were validated in the db/db mouse model of T2DM. This study provides convincing evidence of the power of metabolomics for identifying functional changes at many levels in the omics pipeline.
Resumo:
Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltage-gated sodium channels (VGSCs), which gives rise to allodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC α-subunits (Na(v)), in particular Na(v)1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Na(v)1.7 and Na(v)1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in sham-operated animals, seven days after SNI and 48 h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7 ± 2.7% and 55.0 ± 3.6% of Nedd4-2-positive cells are co-labeled with Na(v)1.7 and Na(v)1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9 ± 1.9% to 33.5 ± 0.7% (p<0.01) and the total Nedd4-2 protein to 44% ± 0.13% of its basal level (p<0.01, n=4 animals in each group, mean ± SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Na(v)s involved in the hyperexcitability associated with peripheral nerve injuries.