992 resultados para 172-1057A
Resumo:
"July 1961."
Resumo:
"July 1977."
Resumo:
Includes index.
Resumo:
Includes index.
Resumo:
G major, K.80.--D major, K.155.--G major, K.156.--C major, K.157.--F major, K.158.--B♭ major, K.159.--E♭ major, K.160.--F major, K.168.--A major, K.169.--C major, K.170.--E♭ major, K.171.--B♭ major, K.172.--D minor, K.173.
Resumo:
pt.1. February 17 to March 31, 1936. 824 p.--pt.2. April 1 to 30, 1936. pp. 825-1524.
Resumo:
Mode of access: Internet.
Resumo:
The strength of the North Atlantic Meridional Overturning Circulation during climatically highly variable Marine Isotope Stage (MIS) 3 has attracted much attention in recent years. Here we present high-resolution Nd isotope compositions of past seawater derived from authigenic Fe-Mn oxyhydroxides recovered from drift sediments on the Blake Ridge in the deep western North Atlantic (ODP Leg 172, Site 1060, 3481 m water depth). The data cover the period from 45 to 35 ka BP, tracing circulation changes during major Heinrich iceberg discharge event 4 (H4, ~40-39 ka BP). The Nd isotope record suggests that there was no northern-source water (NSW) mass like modern NADW at the deeper part of Blake Ridge at any time between 45 and 35 ka. This is fundamentally different from the hydrographic situation during the Holocene where NADW extends below 4500 m at this location. The epsilon-Nd of past deep water recorded in the Blake Ridge sediments was least radiogenic during Dansgaard/Oeschger (D/O) Interstadial (IS) 8 (epsilon-Nd = -11.3) and most radiogenic immediately preceding IS 9 (epsilon-Nd = -9.8). More radiogenic compositions were also recorded during H4 (-10.2 <= epsilon-Nd <= -9.9). The Nd isotope variability in MIS 3 matches that of a physical bottom current strength reconstruction from the same location. Neither record follows the pattern of Northern Hemisphere D/O climatic cycles. In our record, reduced mixing with northern source waters started in stadial 12 and lasted until after H4 in stadial 9, followed by a rapid increase in NSW contribution thereafter. This major change in the Nd isotope record predates the iceberg discharge event Heinrich 4 by more than 3 ka indicating a shallowing of the water mass boundary between Glacial North Atlantic Intermediate Water and Southern Source Water beneath. This early change in bottom water properties at the deep Blake Ridge suggests that North Atlantic deep water advection may already have decreased several thousand years before the actual iceberg discharge event and associated freshening of the surface waters in the North Atlantic. The change can thus not be attributed to climatic events in the North Atlantic but may be related to changes in flux of deep water from the South.
Resumo:
The Atlantic Meridional Overturning Circulation (AMOC) plays an important role in the Northern Hemisphere climate system. Significant interest went into the question of how excessive freshwater input through melting of continental ice can affect its overturning vigor and, hence, heat supply, to higher northern latitudes. Such forcing can be tested by investigating its behavior during extreme iceberg discharge events into the open North Atlantic during the last glacial period, the so-called Heinrich events (HE). Here we present neodymium (Nd) isotope compositions of past seawater, a sensitive chemical water mass tag, extracted from sediments of Ocean Drilling Program Site 1063 in the western North Atlantic (Bermuda Rise), covering the period surrounding HE 2, the Last Glacial Maximum, and the early deglaciation. These data are compared with a record of the kinematic circulation tracer (231Pa/230Th)xs extracted from the same sediment core. Both tracers indicate significant circulation changes preceding intense ice rafting during HE 2 by almost 2 kyr. Moreover, the Nd isotope record suggests the presence of deeply ventilating North Atlantic Deep Water early during Marine Isotope Stage 2 until it was replaced by Southern Source Water at ~27 ka. The early switch to high (Pa/Th)xs and radiogenic epsilon-Nd in relation to intensified ice rafting during HE 2 suggests that ice rafting into the open North Atlantic during major HE 2 was preceded by an early change of the AMOC. This opens the possibility that variations in AMOC contributed to or even triggered the ice sheet instability rather than merely responding to it.
Resumo:
The cores described were taken by the personnel of the Lamont-Doherty Earth Observatory (LDEO) operating as guests scientists during the R/V Atlantis Cruise 172 undertaken by the Woods Hole Oceanographic Institution from April until June 1951. A total of 35 cores were recovered and are available at Lamont-Doherty Earth Observatory for sampling and study.