999 resultados para 13627-015
Resumo:
The results detail a novel methodology for the electrochemical determination of ammonia based on its interaction with hydroquinone in DMF. It has been shown that ammonia reversibly removes protons from the hydroquinone molecules, thus facilitating the oxidative process with the emergence of a new wave at less positive potentials. The analytical utility of the proposed methodology has been examined with a linear range from 10 to 95 ppm and corresponding limit-of-detection of 4.2 ppm achievable. Finally, the response of hydroquinone in the presence of ammonia has been examined in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluormethylsulfonyl)imide, [EMIM][N(Tf)(2)]. Analogous voltammetric waveshapes to that observed in DMF were obtained, thereby confirming the viability of the method in either DMF or [EMIM][N(Tf)(2)] as solvent. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The production of hydrogen by steam reforming of bio-oils obtained from the fast pyrolysis of biomass requires the development of efficient catalysts able to cope with the complex chemical nature of the reactant. The present work focuses on the use of noble metal-based catalysts for the steam reforming of a few model compounds and that of an actual bio-oil. The steam reforming of the model compounds was investigated in the temperature range 650-950 degrees C over Pt, Pd and Rh supported on alumina and a ceria-zirconia sample. The model compounds used were acetic acid, phenol, acetone and ethanol. The nature of the support appeared to play a significant role in the activity of these catalysts. The use of ceria-zirconia, a redox mixed oxide, lead to higher H-2 yields as compared to the case of the alumina-supported catalysts. The supported Rh and Pt catalysts were the most active for the steam reforming of these compounds, while Pd-based catalysts poorly performed. The activity of the promising Pt and Rh catalysts was also investigated for the steam reforming of a bio-oil obtained from beech wood fast pyrolysis. Temperatures close to, or higher than, 800 degrees C were required to achieve significant conversions to COx and H-2 (e.g., H-2 yields around 70%). The ceria-zirconia materials showed a higher activity than the corresponding alumina samples. A Pt/ceria-zirconia sample used for over 9 h showed essentially constant activity, while extensive carbonaceous deposits were observed on the quartz reactor walls from early time on stream. In the present case, no benefit was observed by adding a small amount of O-2 to the steam/bio-oil feed (autothermal reforming, ATR), probably partly due to the already high concentration of oxygen in the bio-oil composition. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Hemopoietic progenitor cells express clustered homeobox (Hox) genes in a pattern characteristic of their lineage and stage of differentiation. In general, HOX expression tends to be higher in more primitive and lower in lineage-committed cells. These trends have led to the hypothesis that self-renewal of hemopoietic stem/progenitor cells is HOX-dependent and that dysregulated HOX expression underlies maintenance of the leukemia-initiating cell. Gene expression profile studies support this hypothesis and specifically highlight the importance of the HOXA cluster in hemopoiesis and leukemogenesis. Within this cluster HOXA6 and HOXA9 are highly expressed in patients with acute myeloid leukemia and form part of the "Hox code" identified in murine models of this disease. We have examined endogenous expression of Hoxa6 and Hoxa9 in purified primary progenitors as well as four growth factor-dependent cell lines FDCP-Mix, EML, 32Dcl3, and Ba/F3, representative of early multipotential and later committed precursor cells respectively. Hoxa6 was consistently higher expressed than Hoxa9, preferentially expressed in primitive cells and was both growth-factor and cell-cycle regulated. Enforced overexpression of HOXA6 or HOXA9 in FDCP-Mix resulted in increased proliferation and colony formation but had negligible effect on differentiation. In both FDCP-Mix and the more committed Ba/F3 precursor cells overexpression of HOXA6 potentiated factor-independent proliferation. These findings demonstrate that Hoxa6 is directly involved in fundamental processes of hemopoietic progenitor cell development.
Resumo:
The micro-irradiation technique continues to be highly relevant to a number of radiobiological studies in vitro. In particular, studies of the bystander effect show that direct damage to cells is not the only trigger for radiation-induced effects, but that unirradiated cells can also respond to signals from irradiated neighbours. Furthermore, the bystander response can be initiated even when no energy is deposited in the genomic DNA of the irradiated cell (i.e. by targeting just the cytoplasm).
Resumo:
The Early Medieval period in Ireland (c. A.D. 400–1150) has been the subject of much archaeological and historical study. The recent application of various forms of archaeological sciences, as well as palaeoenvironmental studies, to the archaeological record have, however, added fresh impetus to this study area. It seems increasingly evident that significant changes to economy and society occurred during this period and were not recorded in detail in the contemporary documentary sources. This paper will attempt to outline those changes and to assess whether, or to what extent, they were influenced by climate change.
Resumo:
The significantly higher surface expression of the surface heat-shock protein receptor CD91 on monocytes of human immunodeficiency virus type-1 (HIV-1)-infected, long-term nonprogressors suggests that HIV-1 antigen uptake and cross-presentation mediated by CD91 may contribute to host anti-HIV-1 defenses and play a role in protection against HIV-1 infection. To investigate this further, we performed phenotypic analysis to compare CD91 surface expression on CD14+ monocytes derived from a cohort of HIV-1-exposed seronegative (ESN) subjects, their seropositive (SP) partners, and healthy HIV-1-unexposed seronegative (USN) subjects. The median fluorescent intensity (MFI) of CD91 on CD14+ monocytes was significantly higher in ESN compared with SP (P=0.028) or USN (P=0.007), as well as in SP compared with USN subjects (P=0.018). CD91 MFI was not normalized in SP subjects on highly active antiretroviral therapy (HAART) despite sustainable, undetectable plasma viraemia. Data in three SP subjects experiencing viral rebounds following interruption of HAART showed low CD91 MFI comparable with levels in USN subjects. There was a significant positive correlation between CD91 MFI and CD8+ T cell counts in HAART-naïve SP subjects (r=0.7, P=0.015). Increased surface expression of CD91 on CD14+ monocytes is associated with the apparent HIV-1 resistance that is observed in ESN subjects.
Resumo:
Bacterial attachment onto intraocular lenses (IOLs) during cataract extraction and IOL implantation is a prominent aetiological factor in the pathogenesis of infectious endophthalmitis. Photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) have shown that photosensitizers are effective treatments for cancer, and in the photoinactivation of bacteria, viruses, fungi and parasites, in the presence of light. To date, no method of localizing the photocytotoxic effect of a photosensitizer at a biomaterial surface has been demonstrated. Here we show a method for concentrating this effect at a material surface to prevent bacterial colonization by attaching a porphyrin photosensitizer at, or near to, that surface, and demonstrate the principle using IOL biomaterials. Anionic hydrogel copolymers were shown to permanently bind a cationic porphyrin through electrostatic interactions as a thin surface layer. The mechanical and thermal properties of the materials showed that the porphyrin acts as a surface cross-linking agent, and renders surfaces more hydrophilic. Importantly, Staphylococcus epidermidis adherence was reduced by up to 99.0 ± 0.42% relative to the control in intense light conditions and 91.7± 5.99% in the dark. The ability to concentrate the photocytotoxic effect at a surface, together with a significant dark effect, provides a platform for a range of light-activated anti-infective biomaterial technologies.
Resumo:
Okadaic acid (OA) and structurally related toxins dinophysistoxin-1 (DTX-1), and DTX-2, are lipophilic marine biotoxins. The current reference method for the analysis of these toxins is the mouse bioassay (MBA). This method is under increasing criticism both from an ethical point of view and because of its limited sensitivity and specificity. Alternative replacement methods must be rapid, robust, cost effective, specific and sensitive. Although published immuno-based detection techniques have good sensitivities, they are restricted in their use because of their inability to: (i) detect all of the OA toxins that contribute to contamination; and (ii) factor in the relative toxicities of each contaminant. Monoclonal antibodies (MAbs) were produced to OA and an automated biosensor screening assay developed and compared with ELISA techniques. The screening assay was designed to increase the probability of identifying a MAb capable of detecting all OA toxins. The result was the generation of a unique MAb which not only cross-reacted with both DTX-1 and DTX-2 but had a cross-reactivity profile in buffer that reflected exactly the intrinsic toxic potency of the OA group of toxins. Preliminary matrix studies reflected these results. This antibody is an excellent candidate for the development of a range of functional immunochemical-based detection assays for this group of toxins.
Resumo:
Objectives: Treatment of epithelial ovarian cancer (EOC) remains a challenge, despite advances in surgery and chemotherapy. Hereditary ovarian cancer is primarily due to germline mutations in the BRCA1 tumour suppressor gene. In addition, sporadic EOC tumours display signi?cant of loss of BRCA1 function due to epigenetic inactivation of the BRCA1 gene. This article reviews the preclinical and clinical evidence to support a role for BRCA1 as a potential predictive biomarker of response to both platinum and taxane based chemotherapy in EOC.
Methods: We conducted a Medline and Pubmed search for reports between 1990 and 2008 using the search terms: BRCA1 and hereditary ovarian cancer, BRCA1 and sporadic ovarian cancer, ovarian cancer and chemotherapy, ovarian cancer and taxanes, ovarian cancer and platinums, ovarian cancer and clinical response, BRCA1 and DNA damage, BRCA1 and DNA repair, BRCA1 and mitotic checkpoint. If reports identi?ed by these criteria referred to other papers not in the initial search, then these were also reviewed if relevant to BRCA1 and ovarian cancer.
Results: The BRCA1 pathway plays a signi?cant role in the development of both hereditary and sporadic EOC. Evidence suggests that BRCA1 is a potential biomarker of response to platinum chemotherapy in EOC with BRCA1 de?ciency predicting for enhanced response. In contrast, initial evidence suggests that loss of BRCA1 function results in reduced response to antimicrotubule-based chemotherapy. The ability of BRCA1 to differentially modulate response to these agents involves loss of BRCA1 mediated DNA repair and mitotic checkpoint control, respectively.
Conclusions: Standard ?rst line treatment of EOC consists of a combination of platinum and taxane chemotherapy, however clinically useful biomarkers for predicting response to these agents have yet to be established. BRCA1 may prove useful as a biomarker in EOC for assigning chemotherapy treatments based on the presence or absence of BRCA1 function.
Resumo:
A dynamic mathematical model for simulating the coupled heat and moisture migration through multilayer porous building materials was proposed. Vapor content and temperature were chosen as the principal driving potentials. The discretization of the governing equations was done by the finite difference approach. A new experimental set-up was also developed in this study. The evolution of transient temperature and moisture distributions inside specimens were measured. The method for determining the temperature gradient coefficient was also presented. The moisture diffusion coefficient, temperature gradient coefficient, sorption–desorption isotherms were experimentally evaluated for some building materials (sandstone and lime-cement mortar). The model was validated by comparing with the experimental data with good agreement. Another advantage of the method lies in the fact that the required transport properties for predicting the non-isothermal moisture flow only contain the vapor diffusion coefficient and temperature gradient coefficient. They are relatively simple, and can be easily determined.
Resumo:
A comprehensively C-14 AMS dated pollen and chironomid record from Boundary Stream Tarn provides the first chironomid-derived temperature reconstruction to quantify temperature change during Lateglacial times (17,500-10,000 cal yr BP) in the Southern Alps, New Zealand. The records indicate a ca 1000-year disruption to the Lateglacial warming trend and an overall cooling consistent with the Antarctic Cold Reversal (ACR). The main interval of chironomid-inferred summer temperature depression (similar to 2-3 degrees C) lasted about 700 years during the ACR. Following this cooling event, both proxies indicate a warming step to temperatures slightly cooler than present during the Younger Dryas chronozone (12,900-11,500 cal yr BP). These results highlight a direct linkage between Antarctica and mid-latitude terrestrial climate systems and the largely asynchronous nature of the interhemispheric climate system during the last glacial transition. The greater magnitude of temperature changes shown by the chironomid record is attributed to the response of the proxies to differences in seasonal climate with chironomids reflecting summer temperature and vegetation more strongly controlled by duration of winter or by minimum temperatures. These differences imply stronger seasonality at times during the Lateglacial, which may explain some of the variability between other paleoclimate records from New Zealand and have wider implications for understanding differences between proxy records for abrupt climate change. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: HIV microbicide trials have emphasized the need to evaluate the safety of topical microbicides and delivery platforms in an animal model prior to conducting clinical efficacy trials. An ideal delivery device should provide sustainable and sufficient concentrations of effective products to prevent HIV transmission while not increasing transmission risk by either local mucosal inflammation and/or disruption of the normal vaginal microflora.
METHODS: Safety analyses of macaque-sized elastomeric silicone and polyurethane intravaginal rings (IVRs) loaded with candidate antiretroviral (ARV) drugs were tested in four studies ranging in duration from 49 to 73 days with retention of the IVR being 28 days in each study. Macaques were assigned to 3 groups; blank IVR, ARV-loaded IVR, and naïve. In sequential studies, the same macaques were used but rotated into different groups. Mucosal and systemic levels of cytokines were measured from vaginal fluids and plasma, respectively, using multiplex technology. Changes in vaginal microflora were also monitored. Statistical analysis (Mann-Whitney test) was used to compare data between two groups of unpaired samples (with and without IVR, and IVR with and without ARV) for the groups collectively, and also for individual macaques.
RESULTS: There were few statistically significant differences in mucosal and systemic cytokine levels measured longitudinally when the ring was present or absent, with or without ARVs. Of the 8 proinflammatory cytokines assayed a significant increase (p = 0.015) was only observed for IL8 in plasma with the blank and ARV loaded IVR (median of 9.2 vs. 5.7 pg/ml in the absence of IVR). There were no significant differences in the prevalence of H2O2-producing lactobacilli or viridans streptococci, or other microorganisms indicative of healthy vaginal microflora. However, there was an increase in the number of anaerobic gram negative rods in the presence of the IVR (p= < 0.0001).
CONCLUSIONS: IVRs with or without ARVs neither significantly induce the majority of potentially harmful proinflammatory cytokines locally or systemically, nor alter the lactobacillus or G. vaginalis levels. The increase in anaerobic gram negative rods alone suggests minimal disruption of normal vaginal microflora. The use of IVRs as a long-term sustained delivery device for ARVs is promising and preclinical studies to demonstrate the prevention of transmission in the HIV/SHIV nonhuman primate model should continue.