999 resultados para 13078-015
Resumo:
Marine legislation is becoming more complex and marine ecosystem-based management is specified in national and regional legislative frameworks. Shelf-seas community and ecosystem models (hereafter termed ecosystem models) are central to the delivery of ecosystem-based management, but there is limited uptake and use of model products by decision makers in Europe and the UK in comparison with other countries. In this study, the challenges to the uptake and use of ecosystem models in support of marine environmental management are assessed using the UK capability as an example. The UK has a broad capability in marine ecosystem modelling, with at least 14 different models that support management, but few examples exist of ecosystem modelling that underpin policy or management decisions. To improve understanding of policy and management issues that can be addressed using ecosystem models, a workshop was convened that brought together advisors, assessors, biologists, social scientists, economists, modellers, statisticians, policy makers, and funders. Some policy requirements were identified that can be addressed without further model development including: attribution of environmental change to underlying drivers, integration of models and observations to develop more efficient monitoring programmes, assessment of indicator performance for different management goals, and the costs and benefit of legislation. Multi-model ensembles are being developed in cases where many models exist, but model structures are very diverse making a standardised approach of combining outputs a significant challenge, and there is a need for new methodologies for describing, analysing, and visualising uncertainties. A stronger link to social and economic systems is needed to increase the range of policy-related questions that can be addressed. It is also important to improve communication between policy and modelling communities so that there is a shared understanding of the strengths and limitations of ecosystem models.
Resumo:
Thin-zone TAP reactor is presented as a basis of the new state-by-state transient screening approach which has been proposed by the authors for non-steady-state kinetic characterization of industrial catalysts. The general thin-zone TAP reactor model is described, and its mathematical status is justified analytically. It is shown that this model provides high enough accuracy to be applicable in the wide conversion interval (up to 90%), which is an important advantage of this approach compared with the traditional differential reactor.
Resumo:
The effect of water depth on the performance of a small surging wave energy converter (WEC) is investigated analytically, numerically and experimentally. It is shown that although the average annual incident wave power is significantly reduced by water depth, a large proportion of this reduction is due to the dissipation of highly energetic, but largely unexploitable seas. It is also shown that the power capture is related more closely to incident wave force than incident wave power. Experimental results demonstrate that both the surge wave force and power capture of a flap-type WEC increase in shallow water.
Resumo:
Abstract The aim was twofold; to demonstrate the ability of temperature-controlled Raman microscopy (TRM) to locate mannitol within a frozen system and determine its form; to investigate the annealing behavior of mannitol solutions at -30 °C. The different polymorphic forms of anhydrous mannitol as well as the hemihydrate and amorphous form were prepared and characterized using crystal or powder X-ray diffractometry (XRD) as appropriate and Raman microscopy. Mannitol solutions (3% w/v) were cooled before annealing at -30 °C. TRM was used to map the frozen systems during annealing and was able to differentiate between the different forms of mannitol and revealed the location of both ß and d polymorphic forms within the structure of the frozen material for the first time. TRM also confirmed that the crystalline mannitol is preferentially deposited at the edge of the frozen drop, forming a rim that thickens upon annealing. While there is no preference for one form initially, the study has revealed that the mannitol preferentially transforms to the ß form with time. TRM has enabled observation of spatially resolved behavior of mannitol during the annealing process for the first time. The technique has clear potential for studying other crystallization processes, with particular advantage for frozen systems.
Liquid-phase oxidation of a pyrimidine thioether on Ti-SBA-15 and UL-TS-1 catalysts in ionic liquids