946 resultados para 10-Southern Crete
Resumo:
Data on outcomes of antiretroviral treatment (ART) programs in rural sub-Saharan African are scarce. We describe early losses and long-term outcomes in 6 rural programs in Southern Africa with limited access to viral load monitoring and second-line ART.
Resumo:
Upper Paleocene–Eocene boulder conglomerate, cross-stratified sandstone, and laminated carbonaceous mudstone of the Arkose Ridge Formation exposed in the southern Talkeetna Mountains record fluvial-lacustrine deposition proximal to the volcanic arc in a forearc basin modified by Paleogene spreading ridge subduction beneath southern Alaska. U-Pb ages of detrital zircon grains and modal analyses were obtained from stratigraphic sections spanning the 2,000 m thick Arkose Ridge Formation in order to constrain the lithology, age, and location of sediment sources that provided detritus. Detrital modes from 24 conglomerate beds and 54 sandstone thin sections aredominated by plutonic and volcanic clasts and plagioclase feldspar with minor quartz, schist, hornblende, argillite, and metabasalt. Westernmost sandstone and conglomerate strata contain <5% volcanic clasts whereas easternmost sandstone and conglomerate strata contain 40 to >80% volcanic clasts. Temporally, eastern sandstones andconglomerates exhibit an upsection increase in volcanic detritus from <40 to >80% volcanic clasts. U-Pb ages from >1400 detrital zircons in 15 sandstone samples reveal three main populations: late Paleocene–Eocene (60-48 Ma; 16% of all grains), Late Cretaceous–early Paleocene (85–60 Ma; 62%) and Jurassic–Early Cretaceous (200–100 Ma; 12%). A plot of U/Th vs U-Pb ages shows that >97% of zircons are <200 Ma and>99% of zircons have <10 U/Th ratios, consistent with mainly igneous source terranes. Strata show increased enrichment in late Paleocene–Eocene detrital zircons from <2% in the west to >25% in the east. In eastern sections, this younger age population increases temporally from 0% in the lower 50 m of the section to >40% in samples collected >740 m above the base. Integration of the compositional and detrital geochronologic data suggests: (1) Detritus was eroded mainly from igneous sources exposed directly north of the Arkose Ridge Formation strata, mainly Jurassic–Paleocene plutons and Paleocene–Eocenevolcanic centers. Subordinate metamorphic detritus was eroded from western Mesozoic low-grade metamorphic sources. Subordinate sedimentary detritus was eroded from eastern Mesozoic sedimentary sources. (2) Eastern deposystems received higher proportions of juvenile volcanic detritus through time, consistent with construction of adjacent slab-window volcanic centers during Arkose Ridge Formation deposition. (3)Western deposystems transported detritus from Jurassic–Paleocene arc plutons that flank the northwestern basin margin. (4) Metasedimentary strata of the Chugach accretionaryprism, exposed 20-50 km south of the Arkose Ridge Formation, did not contribute abundant detritus. Conventional provenance models predict reduced input of volcanic detritus to forearc basins during exhumation of the volcanic edifice and increasing exposure ofsubvolcanic plutons (Dickinson, 1995; Ingersoll and Eastmond, 2007). In the forearc strata of these conventional models, sandstone modal analyses record progressive increases upsection in quartz and feldspar concomitant with decreases in lithic grains, mainly volcanic lithics. Additionally, as the arc massif denudes through time, theyoungest detrital U-Pb zircon age populations become significantly older than the age of forearc deposition as the arc migrates inboard or ceases magmatism. Westernmost strata of the Arkose Ridge Formation are consistent with this conventional model. However, easternmost strata of the Arkose Ridge Formation contain sandstone modes that record an upsection increase in lithic grains accompanied by a decrease in quartz and feldspar, and detrital zircon age populations that closely match the age of deposition. This deviation from the conventional model is due to the proximity of the easternmost strata to adjacent juvenile volcanic rocks emplaced by slab-window volcanic processes. Provenance data from the Arkose Ridge Formation show that forearc basins modified by spreading ridge subduction may record upsection increases in non-arc, syndepositional volcanic detritusdue to contemporaneous accumulation of thick volcanic sequences at slab-window volcanic centers. This change may occur locally at the same time that other regions of the forearc continue to receive increasing amounts of plutonic detritus as the remnant arc denudes, resulting in complex lateral variations in forearc basin petrofacies and chronofacies.
Resumo:
Objectives To determine the diagnostic accuracy of World Health Organization (WHO) 2010 and 2006 as well as United States Department of Health and Human Services (DHHS) 2008 definitions of immunological failure for identifying virological failure (VF) in children on antiretroviral therapy (ART). Methods Analysis of data from children (<16 years at ART initiation) at South African ART sites at which CD4 count/per cent and HIV-RNA monitoring are performed 6-monthly. Incomplete virological suppression (IVS) was defined as failure to achieve ≥1 HIV-RNA ≤400 copies/ml between 6 and 15 months on ART and viral rebound (VR) as confirmed HIV-RNA ≥5000 copies/ml in a child on ART for ≥18 months who had achieved suppression during the first year on treatment. Results Among 3115 children [median (interquartile range) age 48 (20-84) months at ART initiation] on treatment for ≥1 year, sensitivity of immunological criteria for IVS was 10%, 6% and 26% for WHO 2006, WHO 2010 and DHHS 2008 criteria, respectively. The corresponding positive predictive values (PPV) were 31%, 20% and 20%. Diagnostic accuracy for VR was determined in 2513 children with ≥18 months of follow-up and virological suppression during the first year on ART with sensitivity of 5% (WHO 2006/2010) and 27% (DHHS 2008). PPV results were 42% (WHO 2010), 43% (WHO 2006) and 20% (DHHS 2008). Conclusion Current immunological criteria are unable to correctly identify children failing ART virologically. Improved access to viral load testing is needed to reliably identify VF in children.
Resumo:
Objectives: To compare outcomes of antiretroviral therapy (ART) in South Africa, where viral load monitoring is routine, with those in Malawi and Zambia, where monitoring is based on CD4 cell counts. Methods: We included 18 706 adult patients starting ART in South Africa and 80 937 patients in Zambia or Malawi. We examined CD4 responses in models for repeated measures and the probability of switching to second-line regimens, mortality and loss to follow-up in multistate models, measuring time from 6 months. Results: In South Africa, 9.8% [95% confidence interval (CI) 9.1–10.5] had switched at 3 years, 1.3% (95% CI 0.9–1.6) remained on failing first-line regimens, 9.2% (95% CI 8.5–9.8) were lost to follow-up and 4.3% (95% CI 3.9–4.8) had died. In Malawi and Zambia, more patients were on a failing first-line regimen [3.7% (95% CI 3.6–3.9], fewer patients had switched [2.1% (95% CI 2.0–2.3)] and more patients were lost to follow-up [15.3% (95% CI 15.0–15.6)] or had died [6.3% (95% CI 6.0–6.5)]. Median CD4 cell counts were lower in South Africa at the start of ART (93 vs. 132 cells/μl; P < 0.001) but higher after 3 years (425 vs. 383 cells/μl; P < 0.001). The hazard ratio comparing South Africa with Malawi and Zambia after adjusting for age, sex, first-line regimen and CD4 cell count was 0.58 (0.50–0.66) for death and 0.53 (0.48–0.58) for loss to follow-up. Conclusion: Over 3 years of ART mortality was lower in South Africa than in Malawi or Zambia. The more favourable outcome in South Africa might be explained by viral load monitoring leading to earlier detection of treatment failure, adherence counselling and timelier switching to second-line ART.
Resumo:
Background: With expanding pediatric antiretroviral therapy (ART) access, children will begin to experience treatment failure and require second-line therapy. We evaluated the probability and determinants of virologic failure and switching in children in South Africa. Methods: Pooled analysis of routine individual data from children who initiated ART in 7 South African treatment programs with 6-monthly viral load and CD4 monitoring produced Kaplan-Meier estimates of probability of virologic failure (2 consecutive unsuppressed viral loads with the second being >1000 copies/mL, after ≥24 weeks of therapy) and switch to second-line. Cox-proportional hazards models stratified by program were used to determine predictors of these outcomes. Results: The 3-year probability of virologic failure among 5485 children was 19.3% (95% confidence interval: 17.6 to 21.1). Use of nevirapine or ritonavir alone in the initial regimen (compared with efavirenz) and exposure to prevention of mother to child transmission regimens were independently associated with failure [adjusted hazard ratios (95% confidence interval): 1.77 (1.11 to 2.83), 2.39 (1.57 to 3.64) and 1.40 (1.02 to 1.92), respectively]. Among 252 children with ≥1 year follow-up after failure, 38% were switched to second-line. Median (interquartile range) months between failure and switch was 5.7 (2.9-11.0). Conclusions: Triple ART based on nevirapine or ritonavir as a single protease inhibitor seems to be associated with a higher risk of virologic failure. A low proportion of virologically failing children were switched.
Resumo:
The latitudinal position of the southern westerlies has been suggested to be a key parameter for the climate on Earth. According to the general notion, the southern westerlies were shifted equatorward during the global Last Glacial Maximum (LGM: ~24–18 ka), resulting in reduced deep ocean ventilation, accumulation of old dissolved carbon, and low atmospheric CO2 concentrations. In order to test this notion, we applied surface exposure dating on moraines in the southern Central Andes, where glacial mass balances are particularly sensitive to changes in precipitation, i.e. to the latitudinal position of the westerlies. Our results provide robust evidence that the maximum glaciation occurred already at ~39 ka, significantly predating the global LGM. This questions the role of the westerlies for atmospheric CO2, and it highlights our limited understanding of the forcings of atmospheric circulation.