903 resultados para 091501 Computational Fluid Dynamics
Resumo:
Actual energy paths of long, extratropical baroclinic Rossby waves in the ocean are difficult to describe simply because they depend on the meridional-wavenumber-to-zonal-wavenumber ratio tau, a quantity that is difficult to estimate both observationally and theoretically. This paper shows, however, that this dependence is actually weak over any interval in which the zonal phase speed varies approximately linearly with tau, in which case the propagation becomes quasi-nondispersive (QND) and describable at leading order in terms of environmental conditions (i.e., topography and stratification) alone. As an example, the purely topographic case is shown to possess three main kinds of QND ray paths. The first is a topographic regime in which the rays follow approximately the contours f/h(alpha c) = a constant (alpha(c) is a near constant fixed by the strength of the stratification, f is the Coriolis parameter, and h is the ocean depth). The second and third are, respectively, "fast" and "slow" westward regimes little affected by topography and associated with the first and second bottom-pressure-compensated normal modes studied in previous work by Tailleux and McWilliams. Idealized examples show that actual rays can often be reproduced with reasonable accuracy by replacing the actual dispersion relation by its QND approximation. The topographic regime provides an upper bound ( in general a large overestimate) of the maximum latitudinal excursions of actual rays. The method presented in this paper is interesting for enabling an optimal classification of purely azimuthally dispersive wave systems into simpler idealized QND wave regimes, which helps to rationalize previous empirical findings that the ray paths of long Rossby waves in the presence of mean flow and topography often seem to be independent of the wavenumber orientation. Two important side results are to establish that the baroclinic string function regime of Tyler and K se is only valid over a tiny range of the topographic parameter and that long baroclinic Rossby waves propagating over topography do not obey any two-dimensional potential vorticity conservation principle. Given the importance of the latter principle in geophysical fluid dynamics, the lack of it in this case makes the concept of the QND regimes all the more important, for they are probably the only alternative to provide a simple and economical description of general purely azimuthally dispersive wave systems.
Resumo:
A finite difference scheme is presented for the inviscid terms of the equations of compressible fluid dynamics with general non-equilibrium chemistry and internal energy.
Resumo:
An aquaplanet model is used to study the nature of the highly persistent low-frequency waves that have been observed in models forced by zonally symmetric boundary conditions. Using the Hayashi spectral analysis of the extratropical waves, the authors find that a quasi-stationary wave 5 belongs to a wave packet obeying a well-defined dispersion relation with eastward group velocity. The components of the dispersion relation with k ≥ 5 baroclinically convert eddy available potential energy into eddy kinetic energy, whereas those with k < 5 are baroclinically neutral. In agreement with Green’s model of baroclinic instability, wave 5 is weakly unstable, and the inverse energy cascade, which had been previously proposed as a main forcing for this type of wave, only acts as a positive feedback on its predominantly baroclinic energetics. The quasi-stationary wave is reinforced by a phase lock to an analogous pattern in the tropical convection, which provides further amplification to the wave. It is also found that the Pedlosky bounds on the phase speed of unstable waves provide guidance in explaining the latitudinal structure of the energy conversion, which is shown to be more enhanced where the zonal westerly surface wind is weaker. The wave’s energy is then trapped in the waveguide created by the upper tropospheric jet stream. In agreement with Green’s theory, as the equator-to-pole SST difference is reduced, the stationary marginally stable component shifts toward higher wavenumbers, while wave 5 becomes neutral and westward propagating. Some properties of the aquaplanet quasi-stationary waves are found to be in interesting agreement with a low frequency wave observed by Salby during December–February in the Southern Hemisphere so that this perspective on low frequency variability, apart from its value in terms of basic geophysical fluid dynamics, might be of specific interest for studying the earth’s atmosphere.
Resumo:
Waves with periods shorter than the inertial period exist in the atmosphere (as inertia-gravity waves) and in the oceans (as Poincaré and internal gravity waves). Such waves owe their origin to various mechanisms, but of particular interest are those arising either from local secondary instabilities or spontaneous emission due to loss of balance. These phenomena have been studied in the laboratory, both in the mechanically-forced and the thermally-forced rotating annulus. Their generation mechanisms, especially in the latter system, have not yet been fully understood, however. Here we examine short period waves in a numerical model of the rotating thermal annulus, and show how the results are consistent with those from earlier laboratory experiments. We then show how these waves are consistent with being inertia-gravity waves generated by a localised instability within the thermal boundary layer, the location of which is determined by regions of strong shear and downwelling at certain points within a large-scale baroclinic wave flow. The resulting instability launches small-scale inertia-gravity waves into the geostrophic interior of the flow. Their behaviour is captured in fully nonlinear numerical simulations in a finite-difference, 3D Boussinesq Navier-Stokes model. Such a mechanism has many similarities with those responsible for launching small- and meso-scale inertia-gravity waves in the atmosphere from fronts and local convection.
Resumo:
A series of model experiments with the coupled Max-Planck-Institute ECHAM5/OM climate model have been investigated and compared with microwave measurements from the Microwave Sounding Unit (MSU) and re-analysis data for the period 1979–2008. The evaluation is carried out by computing the Temperature in the Lower Troposphere (TLT) and Temperature in the Middle Troposphere (TMT) using the MSU weights from both University of Alabama (UAH) and Remote Sensing Systems (RSS) and restricting the study to primarily the tropical oceans. When forced by analysed sea surface temperature the model reproduces accurately the time-evolution of the mean outgoing tropospheric microwave radiation especially over tropical oceans but with a minor bias towards higher temperatures in the upper troposphere. The latest reanalyses data from the 25 year Japanese re-analysis (JRA25) and European Center for Medium Range Weather Forecasts Interim Reanalysis are in very close agreement with the time-evolution of the MSU data with a correlation of 0.98 and 0.96, respectively. The re-analysis trends are similar to the trends obtained from UAH but smaller than the trends from RSS. Comparison of TLT, computed from observations from UAH and RSS, with Sea Surface Temperature indicates that RSS has a warm bias after 1993. In order to identify the significance of the tropospheric linear temperature trends we determined the natural variability of 30-year trends from a 500 year control integration of the coupled ECHAM5 model. The model exhibits natural unforced variations of the 30 year tropospheric trend that vary within ±0.2 K/decade for the tropical oceans. This general result is supported by similar results from the Geophysical Fluid Dynamics Laboratory (GFDL) coupled climate model. Present MSU observations from UAH for the period 1979–2008 are well within this range but RSS is close to the upper positive limit of this variability. We have also compared the trend of the vertical lapse rate over the tropical oceans assuming that the difference between TLT and TMT is an approximate measure of the lapse rate. The TLT–TMT trend is larger in both the measurements and in the JRA25 than in the model runs by 0.04–0.06 K/decade. Furthermore, a calculation of all 30 year TLT–TMT trends of the unforced 500-year integration vary between ±0.03 K/decade suggesting that the models have a minor systematic warm bias in the upper troposphere.
Resumo:
Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE. Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies. The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed. The aqua-planet configuration is intended as one component of an experimental hierarchy used to evaluate AGCMs. This comparison does suggest that the range of model behaviour could be better understood and reduced in conjunction with Earth climate simulations. Controlled experimentation is required to explore individual model behaviour and investigate convergence of the aqua-planet climate with increasing resolution.
Resumo:
Wave-activity conservation laws are key to understanding wave propagation in inhomogeneous environments. Their most general formulation follows from the Hamiltonian structure of geophysical fluid dynamics. For large-scale atmospheric dynamics, the Eliassen–Palm wave activity is a well-known example and is central to theoretical analysis. On the mesoscale, while such conservation laws have been worked out in two dimensions, their application to a horizontally homogeneous background flow in three dimensions fails because of a degeneracy created by the absence of a background potential vorticity gradient. Earlier three-dimensional results based on linear WKB theory considered only Doppler-shifted gravity waves, not waves in a stratified shear flow. Consideration of a background flow depending only on altitude is motivated by the parameterization of subgrid-scales in climate models where there is an imposed separation of horizontal length and time scales, but vertical coupling within each column. Here we show how this degeneracy can be overcome and wave-activity conservation laws derived for three-dimensional disturbances to a horizontally homogeneous background flow. Explicit expressions for pseudoenergy and pseudomomentum in the anelastic and Boussinesq models are derived, and it is shown how the previously derived relations for the two-dimensional problem can be treated as a limiting case of the three-dimensional problem. The results also generalize earlier three-dimensional results in that there is no slowly varying WKB-type requirement on the background flow, and the results are extendable to finite amplitude. The relationship A E =cA P between pseudoenergy A E and pseudomomentum A P, where c is the horizontal phase speed in the direction of symmetry associated with A P, has important applications to gravity-wave parameterization and provides a generalized statement of the first Eliassen–Palm theorem.
Resumo:
Many physical systems exhibit dynamics with vastly different time scales. Often the different motions interact only weakly and the slow dynamics is naturally constrained to a subspace of phase space, in the vicinity of a slow manifold. In geophysical fluid dynamics this reduction in phase space is called balance. Classically, balance is understood by way of the Rossby number R or the Froude number F; either R ≪ 1 or F ≪ 1. We examined the shallow-water equations and Boussinesq equations on an f -plane and determined a dimensionless parameter _, small values of which imply a time-scale separation. In terms of R and F, ∈= RF/√(R^2+R^2 ) We then developed a unified theory of (extratropical) balance based on _ that includes all cases of small R and/or small F. The leading-order systems are ensured to be Hamiltonian and turn out to be governed by the quasi-geostrophic potential-vorticity equation. However, the height field is not necessarily in geostrophic balance, so the leading-order dynamics are more general than in quasi-geostrophy. Thus the quasi-geostrophic potential-vorticity equation (as distinct from the quasi-geostrophic dynamics) is valid more generally than its traditional derivation would suggest. In the case of the Boussinesq equations, we have found that balanced dynamics generally implies hydrostatic balance without any assumption on the aspect ratio; only when the Froude number is not small and it is the Rossby number that guarantees a timescale separation must we impose the requirement of a small aspect ratio to ensure hydrostatic balance.