967 resultados para 020503 Nonlinear Optics and Spectroscopy
Resumo:
A self-reference fiber Michelson interferometer measurement system, which employs fiber Bragg gratings (FBGs) as in-fiber reflective mirrors and interleaves together two fiber Michelson interferometers that share the common-interferometric-optical path, is presented. One of the fiber interferometers is used to stabilise the system by the use of an electronic feedback loop to compensate the influences resulting from the environmental disturbances, while the other one is used to perform the measurement task. The influences resulting from the environmental disturbances have been eliminated by the compensating action of the electronic feedback loop, this makes the system suitable for on-line precision measurement. By means of the homodyne phase-tracking technique, the linearity of the measurement results of displacement measurements has been very high.
Resumo:
Direct, point-by-point writing of fibre Bragg gratings in standard telecommunication fibre by femtosecond laser irradiation is demonstrated for the first time.
Resumo:
We have observed a positive change or refractive index and formation of waveguides in YAG:Cr4+ crystals, exposed to a high-intensity femtosecond laser beam. The technique is potentially suitable for fabrication of waveguide lasers in crystal materials.
Resumo:
We show that by optimizing the amplifier position in a two-stage dispersion map, the (dispersion-managed) soliton-soliton interaction can be reduced, enabling transmission of 10-Gbits-1 solitons over standard fiber over 16,000 km
Resumo:
A novel technology for simultaneous and independent measurement of dual parameters is proposed and experimented. The length of a single fibre Bragg grating (FBG) is divided into two parts. The temperature variation and another measurand can be measured independently and simultaneously, and the thermal effect can be erased with great ease.
Resumo:
We propose to exploit a self-focusing effect in the atmosphere to assist delivering powerful laser beams from orbit to the ground. We demonstrate through numerical modeling that when the self-focusing length is comparable with the atmosphere height the spot size on the ground can be reduced well below the diffraction limits without beam quality degradation. The density variation suppresses beam filamentation and provides the self-focusing of the beam as a whole. The use of light self-focusing in the atmosphere can greatly relax the requirements for the orbital optics and ground receivers.
Resumo:
Optical Engineering: New waveform generation provides the experimentalist with interesting new tools.
Resumo:
Optical coherence tomography (OCT) is a non-invasive three-dimensional imaging system that is capable of producing high resolution in-vivo images. OCT is approved for use in clinical trials in Japan, USA and Europe. For OCT to be used effectively in a clinical diagnosis, a method of standardisation is required to assess the performance across different systems. This standardisation can be implemented using highly accurate and reproducible artefacts for calibration at both installation and throughout the lifetime of a system. Femtosecond lasers can write highly reproducible and highly localised micro-structured calibration artefacts within a transparent media. We report on the fabrication of high quality OCT calibration artefacts in fused silica using a femtosecond laser. The calibration artefacts were written in fused silica due to its high purity and ability to withstand high energy femtosecond pulses. An Amplitude Systemes s-Pulse Yb:YAG femtosecond laser with an operating wavelength of 1026 nm was used to inscribe three dimensional patterns within the highly optically transmissive substrate. Four unique artefacts have been designed to measure a wide variety of parameters, including the points spread function (PSF), modulation transfer function (MTF), sensitivity, distortion and resolution - key parameters which define the performance of the OCT. The calibration artefacts have been characterised using an optical microscope and tested on a swept source OCT. The results demonstrate that the femtosecond laser inscribed artefacts have the potential of quantitatively and qualitatively validating the performance of any OCT system.
Resumo:
This thesis presents a large scale numerical investigation of heterogeneous terrestrial optical communications systems and the upgrade of fourth generation terrestrial core to metro legacy interconnects to fifth generation transmission system technologies. Retrofitting (without changing infrastructure) is considered for commercial applications. ROADM are crucial enabling components for future core network developments however their re-routing ability means signals can be switched mid-link onto sub-optimally configured paths which raises new challenges in network management. System performance is determined by a trade-off between nonlinear impairments and noise, where the nonlinear signal distortions depend critically on deployed dispersion maps. This thesis presents a comprehensive numerical investigation into the implementation of phase modulated signals in transparent reconfigurable wavelength division multiplexed fibre optic communication terrestrial heterogeneous networks. A key issue during system upgrades is whether differential phase encoded modulation formats are compatible with the cost optimised dispersion schemes employed in current 10 Gb/s systems. We explore how robust transmission is to inevitable variations in the dispersion mapping and how large the margins are when suboptimal dispersion management is applied. We show that a DPSK transmission system is not drastically affected by reconfiguration from periodic dispersion management to lumped dispersion mapping. A novel DPSK dispersion map optimisation methodology which reduces drastically the optimisation parameter space and the many ways to deploy dispersion maps is also presented. This alleviates strenuous computing requirements in optimisation calculations. This thesis provides a very efficient and robust way to identify high performing lumped dispersion compensating schemes for use in heterogeneous RZ-DPSK terrestrial meshed networks with ROADMs. A modified search algorithm which further reduces this number of configuration combinations is also presented. The results of an investigation of the feasibility of detouring signals locally in multi-path heterogeneous ring networks is also presented.
Resumo:
A novel technology for simultaneous and independent measurement of dual parameters is proposed and experimented. The length of a single fibre Bragg grating (FBG) is divided into two parts. The temperature variation and another measurand can be measured independently and simultaneously, and the thermal effect can be erased with great ease. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Error free propagation of a single polarisation optical time division multiplexed 40 Gbit/s dispersion managed pulsed data stream over dispersion (non-shifted) fibre. This distance is twice the previous record at this data rate.
Resumo:
We show that by optimizing the amplifier position in a two-stage dispersion map, the (dispersion-managed) soliton-soliton interaction can be reduced, enabling transmission of 10-Gbits-1 solitons over standard fiber over 16,000 km
Resumo:
Here we present a compact all-room-temperature frequency-doubling scheme generating orange light, using a PPKTP waveguide and a quantum-dot external cavity diode laser (QD-ECDL). The maximum output power for the second harmonic generated light (SHG) was 1.43 mW at 613 nm, achieved for 70 mW of launched pump power at 1226 nm. This represents an important step towards a compact and wall-plug-efficient coherent orange light source, operating at room temperature.
Resumo:
In this paper, we investigate SHG efficiency dependency on crystal length. Four periodically-poled MgSLT crystals (PPMgSLT) of 2, 4, 11 and 25 mm in length were used, for intracavity frequency doubling of an optically-pumped GalnNAs semiconductor disk laser.
Resumo:
We present a novel concept of tailored GTE structure and show that such devices are very useful for the realization of DSC with almost arbitrary dispersion profile and also with tunability in dispersion slope.