964 resultados para 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
Resumo:
The complex problem of a collisionally pumped Ne-like geranium laser is examined through several detailed models. The central model is EHYBRID; a 1 1/2D fluid code which self consistently treats the plasma expansion with the atomic physics of the Ne-like ion for 124 excited levels through a collisional radiative treatment. The output of EHYBRID is used as data for ray-tracing and saturation codes which generate experimental observables. A detailed description of the models is given.
Resumo:
Two techniques are demonstrated to produce ultrashort pulse trains capable of quasi-phase-matching high-harmonic generation. The first technique makes use of an array of birefringent crystals and is shown to generate high-contrast pulse trains with constant pulse spacing. The second technique employs a grating-pair stretcher, a multiple-order wave plate, and a linear polarizer. Trains of up to 100 pulses are demonstrated with this technique, with almost constant inter-pulse separation. It is shown that arbitrary pulse separation can be achieved by introducing the appropriate dispersion. This principle is demonstrated by using an acousto-optic programmable dispersive filter to introduce third-and fourth-order dispersions leading to a linear and quadratic variation of the separation of pulses through the train. Chirped-pulse trains of this type may be used to quasi-phase-match high-harmonic generation in situations where the coherence length varies through the medium. (C) 2010 Optical Society of America
Resumo:
Radiation biophysics has sought to understand at a molecular level, the mechanisms through which ionizing radiations damage DNA, and other molecules within living cells. The complexity of lesions produced in the DNA by ionizing radiations is thought to depend on the amount of energy deposited at the site of each lesion. To study the relationship between the energy deposited and the damage produced, we have developed novel techniques for irradiating dry prasmid DNA, partially re-hydrated DNA and DNA in solution using monochromatic vacuum-UV synchrotron radiation. We have used photons in the energy range 7-150 eV, corresponding to the range of energies typically involved in the efficient production of DNA single-strand (SSB), and double-strand breaks (DSB) by ionizing radiation. The data show that both types of breaks are produced at all energies investigated (with, or without water present). Also, the energy dependence for DSB induction follows a similar trend to SSB induction but at a 20-30-fold reduced incidence, suggesting a common precursor for both types of damage. Preliminary studies where DNA has been irradiated in solution indicate a change in the shape of the dose-effect curve (from linear, to linear-quadratic for double-strand break induction) and a large increase in sensitivity due to the presence of water.
Resumo:
The RBE of alpha -particles in different mutations of Chinese hamster cells was determined with the aim of identifying differences in the sensitivity to x-ray and alpha -particle-induced DNA damage. Two parental lines of Chinese hamster cells and four radiosensitive mutants were irradiated with different single doses of x-rays and alpha -particles and clonogenic cell survival was determined. Radiosensitivity to x-rays varied by a factor of 5 between the cell strains whereas sensitivity to alpha -particle irradiation was almost identical among all strains. The RBE is only determined by the sensitivity of the cells towards x-rays. Since cells with different defects of repair or cell cycle control have different radiosensitivities, we conclude that the effects of x-ray irradiation and the RBE are mostly determined by the activity of repair processes.
Resumo:
We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [Cnmim] [NTf2] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory–Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C2mim] [NTf2]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C2mim][NTf2]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents.
Resumo:
Two- and three-photon detachment rates have been obtained for F- using several expansions in the R-matrix Floquet approach. These rates are compared with other theoretical and experimental results. The use of Hartree-Fock wavefunctions for the ground state of F with addition of continuum electrons does not lead to agreement with experiment for two- and three-photon detachment. By adding correlation terms, agreement with experiment and other theoretical results is improved considerably, demonstrating the importance of electron correlation effects. However, convergence with respect to the wavefunction expansion cannot be established, we also study the intensity dependence of multiphoton detachment rates for F- at the Nd-YAG frequency. Due to the ponderomotive shift the three-photon detachment channel closes at an intensity of 8.5 x 10(11) W cm(-2) and the influence of this channel closure on the multiphoton detachment peaks is illustrated by determining the heights of the excess-photon peaks obtained using a Gaussian laser pulse.
Resumo:
A configuration-interaction approach, based on the use of B-spline basis sets combined with a model potential including monoelectronic and dielectronic core polarization effects, is employed to calculate term energies and wavefunctions for neutral Ca. Results are reported for singlet and triplet bound states, and some quasi-bound states above the lowest ionization limit, with angular momentum up to L = 4. Comparison with experiment and with other theoretical results shows that this method yields the most accurate energy values for neutral Ca obtained to date. Wavefunction compositions, necessary for labelling the levels, and the effects of semi-empirical polarization potentials on the wavefunctions are discussed, as are some recent identifications of doubly-excited states. It is shown that taking into account dielectronic core polarization changes the energies of the lowest terms in Ca significantly, in general by a few hundred cm(-1), the effect decreasing rapidly for the higher bound states. For Rydberg states with n approximate to 7 the accuracy of the results is often better than a few cm(-1). For series members (or perturbers) with a pronounced 3d character the error can reach 150 cm(-1). The wavefunctions are used to calculate oscillator strengths and lifetimes for a number of terms and these are compared with existing measurements. The agreement is good but points to a need for improved measurements.
Resumo:
Calculations of ?-spectra for positron annihilation on a selection of molecules, including methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The annihilation ?-spectra characterise the momentum distribution of the electron-positron pair at the instant of annihilation. The contribution to the ?-spectra from individual molecular orbitals is obtained from electron momentum densities calculated using modern computational quantum chemistry density functional theory tools. The calculation, in its simplest form, effectively treats the low-energy (thermalised, room-temperature) positron as a plane wave and gives annihilation ?-spectra that are about 40% broader than experiment, although the main chemical trends are reproduced. We show that this effective 'narrowing' of the experimental spectra is due to the action of the molecular potential on the positron, chiefly, due to the positron repulsion from the nuclei. It leads to a suppression of the contribution of small positron-nuclear separations where the electron momentum is large. To investigate the effect of the nuclear repulsion, as well as that of short-range electron-positron and positron-molecule correlations, a linear combination of atomic orbital description of the molecular orbitals is employed. It facilitates the incorporation of correction factors which can be calculated from atomic many-body theory and account for the repulsion and correlations. Their inclusion in the calculation gives -spectrum linewidths that are in much better agreement with experiment. Furthermore, it is shown that the effective distortion of the electron momentum density, when it is observed through positron annihilation -spectra, can be approximated by a relatively simple scaling factor. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
Ar photoionization is studied using the R-matrix formalism with emphasis on the simultaneous excitation of the residual A^r+ ion. Cross sections have been obtained for excitation of the 3p^4(3d,4s,4p) states. A comparison with experiments having a resolution of 70 meV shows reasonable agreement for the position and shape of resonance structures. The relative magnitude of the resonances proves to be more elusive. The partial cross section for excitation of the 3p^4(3Pe)4p(2P_3/2^o) and (2D_3/2^o) levels is treated in more detail. A comparison of LS-coupling calculations with high-resolution experimental results shows good agreement for both the excitation cross sections and the polarization of the fluorescence. We also predict the orientation for both levels. We demonstrate that the polarization of the fluorescence originating from the (2D_3/2^o) level can be employed to study spin-orbit effects in Ar photoionization.