987 resultados para 0.9-percent Saline


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background: Morbid obesity is directly related to deterioration in cardiorespiratory capacity, including changes in cardiovascular autonomic modulation. Objective: This study aimed to assess the cardiovascular autonomic function in morbidly obese individuals. Methods: Cross-sectional study, including two groups of participants: Group I, composed by 50 morbidly obese subjects, and Group II, composed by 30 nonobese subjects. The autonomic function was assessed by heart rate variability in the time domain (standard deviation of all normal RR intervals [SDNN]; standard deviation of the normal R-R intervals [SDNN]; square root of the mean squared differences of successive R-R intervals [RMSSD]; and the percentage of interval differences of successive R-R intervals greater than 50 milliseconds [pNN50] than the adjacent interval), and in the frequency domain (high frequency [HF]; low frequency [LF]: integration of power spectral density function in high frequency and low frequency ranges respectively). Between-group comparisons were performed by the Student’s t-test, with a level of significance of 5%. Results: Obese subjects had lower values of SDNN (40.0 ± 18.0 ms vs. 70.0 ± 27.8 ms; p = 0.0004), RMSSD (23.7 ± 13.0 ms vs. 40.3 ± 22.4 ms; p = 0.0030), pNN50 (14.8 ± 10.4 % vs. 25.9 ± 7.2%; p = 0.0061) and HF (30.0 ± 17.5 Hz vs. 51.7 ± 25.5 Hz; p = 0.0023) than controls. Mean LF/HF ratio was higher in Group I (5.0 ± 2.8 vs. 1.0 ± 0.9; p = 0.0189), indicating changes in the sympathovagal balance. No statistical difference in LF was observed between Group I and Group II (50.1 ± 30.2 Hz vs. 40.9 ± 23.9 Hz; p = 0.9013). Conclusion: morbidly obese individuals have increased sympathetic activity and reduced parasympathetic activity, featuring cardiovascular autonomic dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main object of the present paper consists in giving formulas and methods which enable us to determine the minimum number of repetitions or of individuals necessary to garantee some extent the success of an experiment. The theoretical basis of all processes consists essentially in the following. Knowing the frequency of the desired p and of the non desired ovents q we may calculate the frequency of all possi- ble combinations, to be expected in n repetitions, by expanding the binomium (p-+q)n. Determining which of these combinations we want to avoid we calculate their total frequency, selecting the value of the exponent n of the binomium in such a way that this total frequency is equal or smaller than the accepted limit of precision n/pª{ 1/n1 (q/p)n + 1/(n-1)| (q/p)n-1 + 1/ 2!(n-2)| (q/p)n-2 + 1/3(n-3) (q/p)n-3... < Plim - -(1b) There does not exist an absolute limit of precision since its value depends not only upon psychological factors in our judgement, but is at the same sime a function of the number of repetitions For this reasen y have proposed (1,56) two relative values, one equal to 1-5n as the lowest value of probability and the other equal to 1-10n as the highest value of improbability, leaving between them what may be called the "region of doubt However these formulas cannot be applied in our case since this number n is just the unknown quantity. Thus we have to use, instead of the more exact values of these two formulas, the conventional limits of P.lim equal to 0,05 (Precision 5%), equal to 0,01 (Precision 1%, and to 0,001 (Precision P, 1%). The binominal formula as explained above (cf. formula 1, pg. 85), however is of rather limited applicability owing to the excessive calculus necessary, and we have thus to procure approximations as substitutes. We may use, without loss of precision, the following approximations: a) The normal or Gaussean distribution when the expected frequency p has any value between 0,1 and 0,9, and when n is at least superior to ten. b) The Poisson distribution when the expected frequecy p is smaller than 0,1. Tables V to VII show for some special cases that these approximations are very satisfactory. The praticai solution of the following problems, stated in the introduction can now be given: A) What is the minimum number of repititions necessary in order to avoid that any one of a treatments, varieties etc. may be accidentally always the best, on the best and second best, or the first, second, and third best or finally one of the n beat treatments, varieties etc. Using the first term of the binomium, we have the following equation for n: n = log Riim / log (m:) = log Riim / log.m - log a --------------(5) B) What is the minimun number of individuals necessary in 01der that a ceratin type, expected with the frequency p, may appaer at least in one, two, three or a=m+1 individuals. 1) For p between 0,1 and 0,9 and using the Gaussean approximation we have: on - ó. p (1-p) n - a -1.m b= δ. 1-p /p e c = m/p } -------------------(7) n = b + b² + 4 c/ 2 n´ = 1/p n cor = n + n' ---------- (8) We have to use the correction n' when p has a value between 0,25 and 0,75. The greek letters delta represents in the present esse the unilateral limits of the Gaussean distribution for the three conventional limits of precision : 1,64; 2,33; and 3,09 respectively. h we are only interested in having at least one individual, and m becomes equal to zero, the formula reduces to : c= m/p o para a = 1 a = { b + b²}² = b² = δ2 1- p /p }-----------------(9) n = 1/p n (cor) = n + n´ 2) If p is smaller than 0,1 we may use table 1 in order to find the mean m of a Poisson distribution and determine. n = m: p C) Which is the minimun number of individuals necessary for distinguishing two frequencies p1 and p2? 1) When pl and p2 are values between 0,1 and 0,9 we have: n = { δ p1 ( 1-pi) + p2) / p2 (1 - p2) n= 1/p1-p2 }------------ (13) n (cor) We have again to use the unilateral limits of the Gaussean distribution. The correction n' should be used if at least one of the valors pl or p2 has a value between 0,25 and 0,75. A more complicated formula may be used in cases where whe want to increase the precision : n (p1 - p2) δ { p1 (1- p2 ) / n= m δ = δ p1 ( 1 - p1) + p2 ( 1 - p2) c= m / p1 - p2 n = { b2 + 4 4 c }2 }--------- (14) n = 1/ p1 - p2 2) When both pl and p2 are smaller than 0,1 we determine the quocient (pl-r-p2) and procure the corresponding number m2 of a Poisson distribution in table 2. The value n is found by the equation : n = mg /p2 ------------- (15) D) What is the minimun number necessary for distinguishing three or more frequencies, p2 p1 p3. If the frequecies pl p2 p3 are values between 0,1 e 0,9 we have to solve the individual equations and sue the higest value of n thus determined : n 1.2 = {δ p1 (1 - p1) / p1 - p2 }² = Fiim n 1.2 = { δ p1 ( 1 - p1) + p1 ( 1 - p1) }² } -- (16) Delta represents now the bilateral limits of the : Gaussean distrioution : 1,96-2,58-3,29. 2) No table was prepared for the relatively rare cases of a comparison of threes or more frequencies below 0,1 and in such cases extremely high numbers would be required. E) A process is given which serves to solve two problemr of informatory nature : a) if a special type appears in n individuals with a frequency p(obs), what may be the corresponding ideal value of p(esp), or; b) if we study samples of n in diviuals and expect a certain type with a frequency p(esp) what may be the extreme limits of p(obs) in individual farmlies ? I.) If we are dealing with values between 0,1 and 0,9 we may use table 3. To solve the first question we select the respective horizontal line for p(obs) and determine which column corresponds to our value of n and find the respective value of p(esp) by interpolating between columns. In order to solve the second problem we start with the respective column for p(esp) and find the horizontal line for the given value of n either diretly or by approximation and by interpolation. 2) For frequencies smaller than 0,1 we have to use table 4 and transform the fractions p(esp) and p(obs) in numbers of Poisson series by multiplication with n. Tn order to solve the first broblem, we verify in which line the lower Poisson limit is equal to m(obs) and transform the corresponding value of m into frequecy p(esp) by dividing through n. The observed frequency may thus be a chance deviate of any value between 0,0... and the values given by dividing the value of m in the table by n. In the second case we transform first the expectation p(esp) into a value of m and procure in the horizontal line, corresponding to m(esp) the extreme values om m which than must be transformed, by dividing through n into values of p(obs). F) Partial and progressive tests may be recomended in all cases where there is lack of material or where the loss of time is less importent than the cost of large scale experiments since in many cases the minimun number necessary to garantee the results within the limits of precision is rather large. One should not forget that the minimun number really represents at the same time a maximun number, necessary only if one takes into consideration essentially the disfavorable variations, but smaller numbers may frequently already satisfactory results. For instance, by definition, we know that a frequecy of p means that we expect one individual in every total o(f1-p). If there were no chance variations, this number (1- p) will be suficient. and if there were favorable variations a smaller number still may yield one individual of the desired type. r.nus trusting to luck, one may start the experiment with numbers, smaller than the minimun calculated according to the formulas given above, and increase the total untill the desired result is obtained and this may well b ebefore the "minimum number" is reached. Some concrete examples of this partial or progressive procedure are given from our genetical experiments with maize.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Na aplicação do X2-teste devemos distinguir dois casos : Á) Quando as classes de variáveis são caracterizadas por freqüências esperadas entre p = 0,1 e p = 0,9, podemos aplicar o X2-teste praticamente sem restrição. É talvez aconselhável, mas não absolutamente necessário limitar o teste aos casos nos quais a freqüência esperada é pelo menos igual a 5. e porisso incluimos na Táboa II os limites da variação de dois binômios ( 1/2 + 1/2)n ( 1/4 + 3/4)n para valo r es pequenos de N e nos três limites convencionais de precisão : ,5%, 1% e 0,1%. Neste caso, os valores dos X2 Índividuais têm apenas valor limitado e devemos sempre tomar em consideração principalmente o X2 total. O valor para cada X2 individual pode ser calculado porqualquer das expressôe seguintes: x2 = (f obs - f esp)²> f. esp = ( f obs - pn)2 pn = ( f obs% - p)2.N p% (100 - p%) O delta-teste dá o mesmo resultado estatístico como o X2-teste com duas classes, sendo o valor do X2-total algébricamente igual ao quadrado do valor de delta. Assim pode ser mais fácil às vezes calcular o X2 total como quadrado do desvio relativo da. variação alternativa : x² = ( f obs -pn)² p. (1-p)N = ( f obs - p %)2.N p% (100 - p%) B) Quando há classes com freqüência esperada menor do que p = 0,1, podemos analisar os seus valores individuais de X2, e desprezar o valor X2 para as classes com p maior do que 0,9. O X2-teste, todavia, pode agora ser aplicado apenas, quando a freqüência esperada for pelo menos igual ou maior do que 5 ou melhor ainda, igual ou maior do que 10. Quando a freqüência esperada for menor do que 5, a variação das freqüências observadas segue uma distribuição de Poisson, não sendo possível a sua substituição pela aproximação Gausseana. A táboa I dá os limites da variação da série de Poisson para freqüências esperadas (em números) desde 0,001 até 15. A vantagem do emprego da nova táboa I para a comparação, classe por classe, entre distribuições esperadas e observadas é explicada num exemplo concreto. Por meio desta táboa obtemos informações muito mais detablhadas do que pelo X2-teste devido ao fato que neste último temos que reunir as classes nas extremidades das distribuições até que a freqüência esperada atinja pelo menos o valor 5. Incluimos como complemento uma táboa dos limites X2, pára 1 até 30 graus de liberdade, tirada de um outro trabalho recente (BRIEGER, 1946). Para valores maiores de graus da liberdade, podemos calcular os limites por dois processos: Podemos usar uma solução dada por Fischer: √ 2 X² -√ 2 nf = delta Devem ser aplicados os limites unilaterais da distribuição de Gauss : 5%:1, 64; 1%:2,32; 0,1%:3,09: Uma outra solução podemos obter segundo BRIEGER (1946) calculando o valor: √ x² / nf = teta X nf = teta e procurando os limites nas táboas para limites unilaterais de distribuições de Fischer, com nl = nf(X2); n2 = inf; (BRIEGER, 1946).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the estimation of milk production by means of weekly, biweekly, bimonthly observations and also by method known as 6-5-8, where one observation is taken at the 6th week of lactation, another at 5th month and a third one at the 8th month. The data studied were obtained from 72 lactations of the Holstein Friesian breed of the "Escola Superior de Agricultura "Luiz de Queiroz" (Piracicaba), S. Paulo, Brazil), being 6 calvings on each month of year and also 12 first calvings, 12 second calvings, and so on, up to the sixth. The authors criticize the use of "maximum error" to be found in papers dealing with this subject, and also the use of mean deviation. The former is completely supersed and unadvisable and latter, although equivalent, to a certain extent, to the usual standard deviation, has only 87,6% of its efficiency, according to KENDALL (9, pp. 130-131, 10, pp. 6-7). The data obtained were compared with the actual production, obtained by daily control and the deviations observed were studied. Their means and standard deviations are given on the table IV. Inspite of BOX's recent results (11) showing that with equal numbers in all classes a certain inequality of varinces is not important, the autors separated the methods, before carrying out the analysis of variance, thus avoiding to put together methods with too different standard deviations. We compared the three first methods, to begin with (Table VI). Then we carried out the analysis with the four first methods. (Table VII). Finally we compared the two last methods. (Table VIII). These analysis of variance compare the arithmetic means of the deviations by the methods studied, and this is equivalent to compare their biases. So we conclude tht season of calving and order of calving do not effect the biases, and the methods themselves do not differ from this view point, with the exception of method 6-5-8. Another method of attack, maybe preferrable, would be to compare the estimates of the biases with their expected mean under the null hypothesis (zero) by the t-test. We have: 1) Weekley control: t = x - 0/c(x) = 8,59 - 0/ = 1,56 2) Biweekly control: t = 11,20 - 0/6,21= 1,80 3) Monthly control: t = 7,17 - 0/9,48 = 0,76 4) Bimonthly control: t = - 4,66 - 0/17,56 = -0,26 5) Method 6-5-8 t = 144,89 - 0/22,41 = 6,46*** We denote above by three asterisks, significance the 0,1% level of probability. In this way we should conclude that the weekly, biweekly, monthly and bimonthly methods of control may be assumed to be unbiased. The 6-5-8 method is proved to be positively biased, and here the bias equals 5,9% of the mean milk production. The precision of the methods studied may be judged by their standard deviations, or by intervals covering, with a certain probability (95% for example), the deviation x corresponding to an estimate obtained by cne of the methods studied. Since the difference x - x, where x is the mean of the 72 deviations obtained for each method, has a t distribution with mean zero and estimate of standard deviation. s(x - x) = √1+ 1/72 . s = 1.007. s , and the limit of t for the 5% probability, level with 71 degrees of freedom is 1.99, then the interval to be considered is given by x ± 1.99 x 1.007 s = x ± 2.00. s The intervals thus calculated are given on the table IX.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper brings to light new data on the absence of influence of lunar phases on the preservation of bamboo sticks. The author cut down for one and a half years (from - June 18, 1947 to December 30,1948) bamboos in every phase of the moon. With part of the sticks obtained a fence was built; the rest v/as kept under shelter. In the fence there were: 5 whole sticks with no preservative, 5 whole sticks with thanalith, 5 halved sticks with no preservative, 5 halved sticks with thanalith, all buried 10 centimeters in the soil. An equal number of the same types and in the same fence were kept upright 10 centimeters above the soil. Under shelter, in a shed, there was another group of sticks, 10 of each of the same four types. After 5 1/2 years no damage was observed in the fence for any treatment or any phase of the moon. On the other hand, for those bamboos kept under shelter the following numbers of perforated sticks were observed. Number of perforated sticks after 5 1/2 years Without Thanalith Thanalith Date of cutting Phase of the moon Whole Halved Whole Halved 8 - 25 - 47 Prime 0 3 0 0 9 - 29 - 47 Full 0 3 0 0 10 - 7 - 47 Wane 0 3 0 0 10 - 14 - 47 New 2 4 0 0 10 - 29 - 47 Full 0 5 0 0 11 - 6 - 47 Wane 3 3 0 0 11 - 13 - 47 New 0 1 0 0 4 - 1 - 43 Wane 3 5 0 0 8 - 27 - 48 Wane 1 3 0 0 10 - 10 - 48 Prime 1 3 0 0 Totals 10 36 0 0 So, among the 400 sticks kept under shelter, after 5 1/2 years, only 46 were perforated, all among those withe no preservative. No influence of lunar phase at cutting down of sticks seems to be present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os resultados obtidos nos estudos da parte experimental do método da 2,2'-dipiridil cetoxima, permitiriam o estabelecimento de uma técnica para a determinação do cobalto em plantas. A aplicação do método foi precedida de uma avaliação de sua amplitude, exatidão e precisão. Verificou-se que nos intervalos de 0,9 a 9,0 ou de 1,0 a 10,0 microgramas de cobalto/3 ml do solvente, foram obtidos os menores erros relativos da concentração. Dentro dos limites estudados, o método segue a lei de Beer. A precisão da técnica proposta, avaliada através de ensaios de recuperação, foi considerada satisfatória.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A trial was carried out with one year old 'Ohio Beauty apples (grafted on 'Doucin'), grown on sand cu1ture, receining nutrient solutions lacking the following nutrients at the time: N, P, K, Ca, Mg, S, and B. The main conclusions are as follows: as the adequate and inadequate levels from leaf analysis were, respectively: N -2.22 and 1.53%, P - 0,17 and 0.05%, K - 1.32 and 0.33%; Ca -0.9.4 and 0.52%, Mg - 0.37 and 0.06%; S -0.18 and 0.08%; B -62 and 2k ppm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foi feita a determinaçio dos elementos minerais contidos nos frutos do cacaueiro, amêndoas e casca. Um quilo de amendoas secas contêm, em grama: N-33,4; P--2,1; K-8,1; Ca-0,8; Mg-1,9; S-0,9; em mg: B-12; Cu-16, Fe-80; Mn-28; Mo-0,04; Zn-47. A análise completa do casqueiro semi decomposto mostrou na matéria seca os seguintes teores porcentuais N-2,20; P-0,05; K-2,40; Ca-0,51; Mg-0,32; S--0,12; concentração dos micronutrientes, em ppm é B-16; Cu-16; Fe-368; Mn-56; Mo-0,06; Zn-93. Foram colhidas amostras de folhas de uma roça altamente produtiva (172 arrobas ou 2580 quilos//ha)cuja análise mostrou os sequintes teores: N-I ,98%; P-0,17; K-2,20; Ca--0,73; Mq-0,19; B-25 ppm; Cu-14; Fe-87; Mu-134; Mo-0,16; Zn-96.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O bagaço de cana-de-açúcar "in natura" (BIN) associado ou não ao bicarbonato de sódio foi testado como substituto do feno de gramínea como fonte de fibra longa para rações de ruminantes balanceadas com altas proporções de bagaço auto-hidrolisado (BAH). A ração básica (I) continha 54% BAH; 10% milho grão; 25% farelo de algodão; 8% feno de gramínea; 0,9% calcáreo; 0,5% uréia; e 1,5% premix mineral, base seca. As rações II e III continham BIN e BIN mais bicarbonato de sódio (1,1%, base seca) respectivamente em substituição ao feno de gramínea da ração I. Foram usados bovinos Nelore machos não castrados e fêmeas (18 de cada sexo) em crescimento com médias iniciais de peso vivo e idade de 199 kg e 11 meses. O delineamento estatístico usado foi um fatorial com 3 rações e dois sexos, com dois animais por parcela. O período de adaptação foi de 15 dias e o experimental de 87 dias. Os dados para GPV (kg/dia); ingestão de MS (% PV); conversão alimentar (kg MS/Kg GPV); e pH fecal foram de: 0,909; 2,79; 7,41; e 6,46 para a ração I; 0,867; 2,65; 7,24; e 6,57 para a ração II; e 1,019; 2,88; 7,03 e 6,73 para a ração III. A ração III foi superior rações I e II para ganho de peso (P < 0,05), e apresentou um pH fecal maior do que o da ração I (P < 0,05). Os machos foram superiores às fêmeas em ganho de peso (1,044 vs 0,820; P < 0,01) e conversão alimentar (6,7vs7,7kg MS/Kg GPV; P < 0,01). Foi observada uma correlação negativa signi ficativa (P < 0,05) entre conversão alimentar e pH fecal (r =-0,50). Os elevados níveis de consumo (2,8% PV), o baixo pH do BAH (2,9 a 3,4), e a aparente baixa atividade de ruminação observados sugerem que o pH, a nível de rume e de trato digestivo inferior, é um fator limitante em dietas com altas proporções de BAH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal requeriments of Culex quinquefasciatus (Say, 1823) and the number of generations in the year are determined. The colony to obtain eggs, larvae, pupae and adults was established under laboratory conditions. Every stage was maintained at constant temperature (15, 20, 25 and 30ºC), in cameras, with relative humidity of 80% ± 5 and photophase of 12 hours, to settle down the thermal inferior limit and the thermal constant by the method of the hiperbole. The thermal inferior limit to phase of egg, larvae and pupa were respectively 10.0, 9.1 and 10.2ºC, and 10.2ºC to all the aquatic cycle, with a thermal constant of 207.2 degree-day, with the mean of 15.5 generations per year in Pelotas, State of Rio Grande do Sul.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To estimate the populational fluctuation of Chrysomya Robineau-Desvoidy, 1830 species and the relation of populational abundance around, six wind oriented trap (WOT) were placed in three distinct ecological areas (urban, rural and wild) in Pelotas, Rio Grande do Sul, Brazil, from February/1993 to January/1995. The flies were weekly collected. Captured species were Chrysomya albiceps Wiedmann, 1819, C. megacephala Fabricius, 1794 and C. putoria Wiedmann, 1830 with respective abundance of 64.5%, 19.7% and 0.9%, representing a total of 85.0% of 409,920 specimens of Calliphoridae. The three species demonstrated similarity in the populational fluctuation, except in the abundance. The populational peak ocurred in autum when the temperature decreases. In the months of July to November no fly was collected, recomposing the population in December, when the temperature surpassed 20ºC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este estudo explora a maturação de gametas e biometria de Phragmatopoma caudata Krøyer in Mörch, 1863 para endossar uma metodologia e oferecer uma técnica adequada para estudos que objetivam avaliar a ecologia populacional. A análise de correlação de Pearson confirmou a relação positiva (r = 0,90, P <0,0001) entre o comprimento do corpo e o comprimento da coroa opercular. Indivíduos com opercular crown < 0,9 mm podem ser considerados como juvenil devido à ausência de gametas. Portanto, utilizando-se o método aprovado para separar as classes de tamanho, a população dos recifes de P. caudata no Parque Estadual Xixová-Japuí (PEJX) na Baía de Santos, Estado de São Paulo, foi examinada durante dois anos, com o objetivo de analisar a densidade populacional e o padrão sazonal da classe juvenil. Em período de elevadas taxas de juvenis, a densidade populacional atingiu 128.115 ind./m², porém, a média foi 65.090±22.033 ind./m². As análises estatísticas (Kruskal-Wallis H = 18,475, p < 0,01) revelaram existir variação significativa na composição juvenil entre as estações chuvosa e seca. Apesar da presença de juvenis em meses de seca, as estações chuvosas contemplaram 92,1% dos juvenis amostrados. O padrão de juvenis observado pode estar relacionado com fatores biológicos (e.g. gametogênese e ciclo de vida) e abióticos (e.g. suprimento alimentar e correntes marinhas). Estes resultados destacam a necessidade de programas de monitoramento de longo prazo que integrem elementos ecológicos e abióticos, a fim de obter uma compreensão mais completa da ecologia desse poliqueta e ajudar a gerenciar a biodiversidade marinha do PEJX.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

São relatadas as observações a respeito dos hábitos de defecação e de sucção em 6 espécies de hemípteros hematófagos. O quadro abaixo reúne os resultados mais gerais obtidos, apreciados em conjunto: Espécies de exemplares utilizados; % de insetos que defecaram durante ou logo após a picada; N.º médio de defecações nas 3 primeiras horas após o repasto; Duração média de sucção (minutos); % de insetos que sugaram sem interromper a picada. R. prolixus 2 machos, 8 fêmeas e 10 ninfas (50,0; 13,7; 14,2; 20,0). R. neglectus 2 machos, 8 fêmeas e 10 ninfas (30,0; 9,6; 18,5; 20,0). T. infestans 2 machos, 11 fêmeas e 20 ninfas (30,0; 7,1; 15,5; 47,5). P. megistus 6 machos, 10 fêmeas e 12 ninfas (22,7; 3,4; 22,7; 82,1). T. sordida 13 machos e 11 ninfas (12,5; 4,5; 20,0; 79,2). T. vitticeps 11 ninfas (0; 6,2; 26,8; 90,9). De modo geral, a capacidade de defecar no ato da picada mostrou-se diretamente proporcional ao número de defecações (nas três primeiras horas) e à freqüência das interrupções da picada, e inversamente proporcional ao tempo de duração da sucção. Os barbeiros adultos se mostraram mais aptos a defecar no ato da picada do que em fase de ninfa, as fêmeas mais do que os machos. Das espécies observadas, o R. prolixus foi a que melhores condições demonstrou para realizar a contaminação fecal do hospedeiro vertebrado. Sugere-se que um estudo mais aprofundado sôbre a eficácia contaminativa dos diversos transmissores do S. cruzi seja feito de preferência no verão e à noite, em zonas onde grassa endêmicamente a doença de Chagas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The limited ability of common variants to account for the genetic contribution to complex disease has prompted searches for rare variants of large effect, to partly explain the 'missing heritability'. Analyses of genome-wide genotyping data have identified genomic structural variants (GSVs) as a source of such rare causal variants. Recent studies have reported multiple GSV loci associated with risk of obesity. We attempted to replicate these associations by similar analysis of two familial-obesity case-control cohorts and a population cohort, and detected GSVs at 11 out of 18 loci, at frequencies similar to those previously reported. Based on their reported frequencies and effect sizes (OR≥25), we had sufficient statistical power to detect the large majority (80%) of genuine associations at these loci. However, only one obesity association was replicated. Deletion of a 220 kb region on chromosome 16p11.2 has a carrier population frequency of 2×10(-4) (95% confidence interval [9.6×10(-5)-3.1×10(-4)]); accounts overall for 0.5% [0.19%-0.82%] of severe childhood obesity cases (P = 3.8×10(-10); odds ratio = 25.0 [9.9-60.6]); and results in a mean body mass index (BMI) increase of 5.8 kg.m(-2) [1.8-10.3] in adults from the general population. We also attempted replication using BMI as a quantitative trait in our population cohort; associations with BMI at or near nominal significance were detected at two further loci near KIF2B and within FOXP2, but these did not survive correction for multiple testing. These findings emphasise several issues of importance when conducting rare GSV association, including the need for careful cohort selection and replication strategy, accurate GSV identification, and appropriate correction for multiple testing and/or control of false discovery rate. Moreover, they highlight the potential difficulty in replicating rare CNV associations across different populations. Nevertheless, we show that such studies are potentially valuable for the identification of variants making an appreciable contribution to complex disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schistosomiasis mansoni endemic zone of Venezuela is located in the valleys of the north central mountain region, with an extension of 15,000 km2 and inhabited by 5.1 million persons. The disease was discovered in 1906, but an organized Control Program was not established until 1943. Its basic activity has been the control of the snail vector, but prevention of man-water contact, prevention of snail infection, treatment of infected people and sanitary instruction, have also been carried out. Prevalence has diminished from 14.7% (1943-60) to 0.9% (1981-84). At present few active foci still persist, but a low transmission rate and low morbidity makes it difficult to know the exact number of infected people, which has been estimulated to be about 50,000.