967 resultados para Électroencéphalographie (EEG)
Resumo:
The socialisation of mentally handicapped people is a long-term process during which the disabled person learns new habits and abilities step by step through education and training. Anxiety and neuroses due to an inadequate social environment can place obstacles in the path of the disabled person's integration into society. A method of regulating the psycho-physiological condition of mentally handicapped people (MRPC) was developed in order to reduce anxiety and neuropsychological tension and to establish positive social attitudes. Both verbal and non-verbal means of manipulating the psycho-physiological condition were used and experimental and control groups were formed from among the clients of Israelian's institute. The experimental groups applied the new method for six months, leading to a significant shift in the response of the clients involved. Expressed anxiety and defensive responses to mental tasks were transformed into orienting responses after 30 psycho-regulative exercises. Cognitive functions such as attention and memory also improved significantly. EEG examinations of the actual process of psycho-regulation revealed a tendency towards a change of brain activity by increasing the fast pulse frequency values in the alpha zones. Israelian concludes that the application of the MRPC creates better functional conditions for the socialisation of mentally handicapped people.
Resumo:
BACKGROUND AND PURPOSE: Perfusion CT (P-CT) is used for acute stroke management, not, however, for evaluating epilepsy. To test the hypothesis that P-CT may identify patients with increased regional cerebral blood flow during subtle status epilepticus (SSE), we compared P-CT in SSE to different postictal conditions. METHODS: Fifteen patients (mean age 47 years, range 21-74) underwent P-CT immediately after evaluation in our emergency room. Asymmetry indices between affected and unaffected hemispheres were calculated for regional cerebral blood volume (rCBV), regional cerebral blood flow (rCBF), and mean transit time (MTT). Regional perfusion changes were compared to EEG findings. RESULTS: Three patients in subtle status epilepticus (group 1) had increased regional perfusion with electro-clinical correlate. Six patients showed postictal slowing on EEG corresponding to an area of regional hypoperfusion (group 2). CT and EEG were normal in six patients with a first epileptic seizure (group 3). Cluster analysis of asymmetry indices separated SSE from the other two groups in all three parameters, while rCBF helped to distinguish between chronic focal epilepsies and single events. CONCLUSION: Preliminary results indicate that P-CT may help to identify patients with SSE during emergency workup. This technique provides important information to neurologists or emergency physicians in the difficult clinical differential diagnosis of altered mental status due to subtle status epilepticus.
Resumo:
BACKGROUND: The prevalence and characteristics of sleep-wake disturbances in sporadic Creutzfeldt-Jakob disease (sCJD) are poorly understood. METHODS: Seven consecutive patients with definite sCJD underwent a systematic assessment of sleep-wake disturbances, including clinical history, video-polysomnography, and actigraphy. Extent and distribution of neurodegeneration was estimated by brain autopsy in six patients. Western blot analyses enabling classification and quantification of the protease-resistant isoform of the prion protein, PrPSc, in thalamus and occipital cortex was available in four patients. RESULTS: Sleep-wake symptoms were observed in all patients, and were prominent in four of them. All patients had severe sleep EEG abnormalities with loss of sleep spindles, very low sleep efficiency, and virtual absence of REM sleep. The correlation between different methods to assess sleep-wake functions (history, polysomnography, actigraphy, videography) was generally poor. Brain autopsy revealed prominent changes in cortical areas, but only mild changes in the thalamus. No mutation of the PRNP gene was found. CONCLUSIONS: This study demonstrates in sporadic Creutzfeldt-Jakob disease, first, the existence of sleep-wake disturbances similar to those reported in fatal familial insomnia in the absence of prominent and isolated thalamic neuronal loss, and second, the need of a multimodal approach for the unambiguous assessment of sleep-wake functions in these patients.
Resumo:
BACKGROUND: Hypnotic depth but not haemodynamic response to painful stimulation can be measured with various EEG-based anaesthesia monitors. We evaluated the variation of pulse plethysmography amplitude induced by an electrical tetanic stimulus (PPG variation) as a potential measure for analgesia and predictor of haemodynamic responsiveness during general anaesthesia. METHODS: Ninety-five patients, ASA I or II, were randomly assigned to five groups [Group 1: bispectral index (BIS) (range) 40-50, effect site remifentanil concentration 1 ng ml(-1);Group 2: BIS 40-50, remifentanil 2 ng ml(-1); Group 3: BIS 40-50, remifentanil 4 ng ml(-1); Group 4: BIS 25-35, remifentanil 2 ng ml(-1); Group 5: BIS 55-65, remifentanil 2 ng ml(-1)]. A 60 mA tetanic stimulus was applied for 5 s on the ulnar nerve. From the digitized pulse oximeter wave recorded on a laptop computer, linear and non-linear parameters of PPG variation during the 60 s period after stimulation were computed. The haemodynamic response to subsequent orotracheal intubation was recorded. The PPG variation was compared between groups and between responders and non-responders to intubation (anova). Variables independently predicting the response were determined by logistic regression. RESULTS: The probability of a response to tracheal intubation was 0.77, 0.47, 0.05, 0.18 and 0.52 in Groups 1-5, respectively (P<0.03). The PPG variability was significantly higher in responders than in non-responders but it did not improve the prediction of the response to tracheal intubation based on BIS level and effect site remifentanil concentration. CONCLUSION: Tetanic stimulation induced PPG variation does not reflect the analgesic state in a wide clinical range of surgical anaesthesia.
Resumo:
Avoidance of excessively deep sedation levels is problematic in intensive care patients. Electrophysiologic monitoring may offer an approach to solving this problem. Since electroencephalogram (EEG) responses to different sedation regimens vary, we assessed electrophysiologic responses to two sedative drug regimens in 10 healthy volunteers. Dexmedetomidine/remifentanil (dex/remi group) and midazolam/remifentanil (mida/remi group) were infused 7 days apart. Each combination of medications was given at stepwise intervals to reach Ramsay scores (RS) 2, 3, and 4. Resting EEG, bispectral index (BIS), and the N100 amplitudes of long-latency auditory-evoked potentials (ERP) were recorded at each level of sedation. During dex/remi, resting EEG was characterized by a recurrent high-power low-frequency pattern which became more pronounced at deeper levels of sedation. BIS Index decreased uniformly in only the dex/remi group (from 94 +/- 3 at baseline to 58 +/- 14 at RS 4) compared to the mida/remi group (from 94 +/- 2 to 76 +/- 10; P = 0.029 between groups). The ERP amplitudes decreased from 5.3 +/- 1.3 at baseline to 0.4 +/- 1.1 at RS 4 (P = 0.003) in only the mida/remi group. We conclude that ERPs in volunteers sedated with dex/remi, in contrast to mida/remi, indicate a cortical response to acoustic stimuli, even when sedation reaches deeper levels. Consequently, ERP can monitor sedation with midazolam but not with dexmedetomidine. The reverse is true for BIS.
Resumo:
This chapter attempts to integrate data from both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) to elucidate the activation of the cortical areas in musical performance for both execution and imagination of music during string playing. In both fMRI and EEG experiments, playing the music was compared with imagining the music. This allowed separation of the areas mainly involved in motor execution from those involved in imagining, planning, and working memory, thus differentiating musical from purely motor areas.
Resumo:
Speech melody or prosody subserves linguistic, emotional, and pragmatic functions in speech communication. Prosodic perception is based on the decoding of acoustic cues with a predominant function of frequency-related information perceived as speaker's pitch. Evaluation of prosodic meaning is a cognitive function implemented in cortical and subcortical networks that generate continuously updated affective or linguistic speaker impressions. Various brain-imaging methods allow delineation of neural structures involved in prosody processing. In contrast to functional magnetic resonance imaging techniques, DC (direct current, slow) components of the EEG directly measure cortical activation without temporal delay. Activation patterns obtained with this method are highly task specific and intraindividually reproducible. Studies presented here investigated the topography of prosodic stimulus processing in dependence on acoustic stimulus structure and linguistic or affective task demands, respectively. Data obtained from measuring DC potentials demonstrated that the right hemisphere has a predominant role in processing emotions from the tone of voice, irrespective of emotional valence. However, right hemisphere involvement is modulated by diverse speech and language-related conditions that are associated with a left hemisphere participation in prosody processing. The degree of left hemisphere involvement depends on several factors such as (i) articulatory demands on the perceiver of prosody (possibly, also the poser), (ii) a relative left hemisphere specialization in processing temporal cues mediating prosodic meaning, and (iii) the propensity of prosody to act on the segment level in order to modulate word or sentence meaning. The specific role of top-down effects in terms of either linguistically or affectively oriented attention on lateralization of stimulus processing is not clear and requires further investigations.
Resumo:
STUDY OBJECTIVES: Periodic leg movements in sleep (PLMS) are frequently accompanied by arousals and autonomic activation, but the pathophysiologic significance of these manifestations is unclear. DESIGN: Changes in heart rate variability (HRV), HRV spectra, and electroencephalogram (EEG) spectra associated with idiopathic PLMS were compared with changes associated with isolated leg movements and respiratory-related leg movements during sleep. Furthermore, correlations between electromyographic activity, HRV changes, and EEG changes were assessed. SETTING: Sleep laboratory. PATIENTS: Whole-night polysomnographic studies of 24 subjects fulfilling the criteria of either periodic leg movements disorder (n = 8), obstructive sleep apnea syndrome (n = 7), or normal polysomnography (n = 9) were used. MEASUREMENTS AND RESULTS: Spectral HRV changes started before all EEG changes and up to 6 seconds before the onset of all types of leg movements. An initial weak autonomic activation was followed by a sympathetic activation, an increase of EEG delta activity, and finally a progression to increased higher-frequency EEG rhythms. After movement onset, HRV indicated a vagal activation, and, the EEG, a decrease in spindle activity. Sympathetic activation, as measured by HRV spectra, was greater for PLMS than for all other movement types. In EEG, gamma synchronization began 1 to 2 seconds earlier for isolated leg movements and respiratory-related leg movements than for PLMS. Significant correlations were found between autonomic activations and electromyographic activity, as well as between autonomic activations and EEG delta activity, but not between higher-frequency EEG rhythms and EMG activity or HRV changes. CONCLUSIONS: These results suggest a primary role of the sympathetic nervous system in the generation of PLMS.
Resumo:
BACKGROUND: Although yawning is a ubiquitous and phylogenetically old phenomenon, its origin and purpose remain unclear. The study aimed at testing the widely held hypothesis that yawning is triggered by drowsiness and brings about a reversal or suspension of the process of falling asleep. METHODS: Subjects complaining of excessive sleepiness were spontaneously yawning while trying to stay awake in a quiet and darkened room. Changes in their electroencephalogram (EEG) and heart rate variability (HRV) associated with yawning were compared to changes associated with isolated voluntary body movements. Special care was taken to remove eye blink- and movement-artefacts from the recorded signals. RESULTS: Yawns were preceded and followed by a significantly greater delta activity in EEG than movements (p< or =0.008). After yawning, alpha rhythms were attenuated, decelerated, and shifted towards central brain regions (p< or =0.01), whereas after movements, they were attenuated and accelerated (p<0.02). A significant transient increase of HRV occurred after the onset of yawning and movements, which was followed by a significant slow decrease peaking 17s after onset (p<0.0001). No difference in HRV changes was found between yawns and movements. CONCLUSIONS: Yawning occurred during periods with increased drowsiness and sleep pressure, but was not followed by a measurable increase of the arousal level of the brain. It was neither triggered nor followed by a specific autonomic activation. Our results therefore confirm that yawns occur due to sleepiness, but do not provide evidence for an arousing effect of yawning.
Resumo:
RATIONALE: Olanzapine is an atypical antipsychotic drug with a more favourable safety profile than typical antipsychotics with a hitherto unknown topographic quantitative electroencephalogram (QEEG) profile. OBJECTIVES: We investigated electrical brain activity (QEEG and cognitive event related potentials, ERPs) in healthy subjects who received olanzapine. METHODS: Vigilance-controlled, 19-channel EEG and ERP in an auditory odd-ball paradigm were recorded before and 3 h, 6 h and 9 h after administration of either a single dose of placebo or olanzapine (2.5 mg and 5 mg) in ten healthy subjects. QEEG was analysed by spectral analysis and evaluated in nine frequency bands. For the P300 component in the odd-ball ERP, the amplitude and latency was analysed. Statistical effects were tested using a repeated-measurement analysis of variance. RESULTS: For the interaction between time and treatment, significant effects were observed for theta, alpha-2, beta-2 and beta-4 frequency bands. The amplitude of the activity in the theta band increased most significantly 6 h after the 5-mg administration of olanzapine. A pronounced decrease of the alpha-2 activity especially 9 h after 5 mg olanzapine administration could be observed. In most beta frequency bands, and most significantly in the beta-4 band, a dose-dependent decrease of the activity beginning 6 h after drug administration was demonstrated. Topographic effects could be observed for the beta-2 band (occipital decrease) and a tendency for the alpha-2 band (frontal increase and occipital decrease), both indicating a frontal shift of brain electrical activity. There were no significant changes in P300 amplitude or latency after drug administration. Conclusion: QEEG alterations after olanzapine administration were similar to EEG effects gained by other atypical antipsychotic drugs, such as clozapine. The increase of theta activity is comparable to the frequency distribution observed for thymoleptics or antipsychotics for which treatment-emergent somnolence is commonly observed, whereas the decrease of beta activity observed after olanzapine administration is not characteristic for these drugs. There were no clear signs for an increased cerebral excitability after a single-dose administration of 2.5 mg and 5 mg olanzapine in healthy controls.
Resumo:
Neural correlates of electroencephalographic (EEG) alpha rhythm are poorly understood. Here, we related EEG alpha rhythm in awake humans to blood-oxygen-level-dependent (BOLD) signal change determined by functional magnetic resonance imaging (fMRI). Topographical EEG was recorded simultaneously with fMRI during an open versus closed eyes and an auditory stimulation versus silence condition. EEG was separated into spatial components of maximal temporal independence using independent component analysis. Alpha component amplitudes and stimulus conditions served as general linear model regressors of the fMRI signal time course. In both paradigms, EEG alpha component amplitudes were associated with BOLD signal decreases in occipital areas, but not in thalamus, when a standard BOLD response curve (maximum effect at approximately 6 s) was assumed. The part of the alpha regressor independent of the protocol condition, however, revealed significant positive thalamic and mesencephalic correlations with a mean time delay of approximately 2.5 s between EEG and BOLD signals. The inverse relationship between EEG alpha amplitude and BOLD signals in primary and secondary visual areas suggests that widespread thalamocortical synchronization is associated with decreased brain metabolism. While the temporal relationship of this association is consistent with metabolic changes occurring simultaneously with changes in the alpha rhythm, sites in the medial thalamus and in the anterior midbrain were found to correlate with short time lag. Assuming a canonical hemodynamic response function, this finding is indicative of activity preceding the actual EEG change by some seconds.
Resumo:
Pediatric cardiac surgery with cardiopulmonary bypass (CPB) is frequently associated with neurologic deficits. We describe the postoperative EEG changes, assess their possible causes, and evaluate their relevance to neurologic outcome. Thirty-one children and five neonates with congenital heart disease were included. EEG recording started after intubation and continued until 22-96 h after CPB. In addition to conventional analysis, spectral analysis was performed for occipital and frontal electrodes, and differences between pre- and postoperative delta power (delta-deltaP) were calculated. Maximum values of occipital delta-deltaP that occurred within 48 h after CPB were correlated with clinical variables and with perioperative markers of oxidative stress and inflammation. Occipital delta-deltaP correlated with frontal delta-deltaP, and maximum delta-deltaP correlated with conventional rating. Distinct rise of deltaP was detected in 18 of 21 children without any acute or long-term neurologic deficits but only in five of 10 children with temporary or permanent neurologic deficits. Furthermore, maximally registered delta-deltaP was inversely associated with duration of CPB and postoperative ventilation. Maximal delta-deltaP was also inversely associated with the loss of plasma ascorbate (as an index of oxidative stress) and plasma levels of IL-6 and IL-8. Slow wave activity frequently occurs within 48 h after CPB. However, our data do not support the notion that EEG slowing is associated with adverse neurologic outcome. This is supported by the fact that EEG slowing was associated with less oxido-inflammatory stress.
Resumo:
A study was designed to investigate the effect of medetomidine sedation on quantitative electroencephalography (q-EEG) in healthy young and adult cats to determine objective guidelines for diagnostic EEG recordings and interpretation. Preliminary visual examination of EEG recordings revealed high-voltage low-frequency background activity. Spindles, k-complexes and vertex sharp transients characteristic of sleep or sedation were superimposed on a low background activity. Neither paroxysmal activity nor EEG burst-suppression were observed. The spectral analysis of q-EEG included four parameters, namely, relative power (%), and mean, median and peak frequency (Hz) of all four frequency bands (delta, theta, alpha and beta). The findings showed a prevalence of slow delta and theta rhythms as opposed to fast alpha and beta rhythms in both young (group A) and adult (group B) cats. A posterior gradient was reported for the theta band and an anterior gradient for the alpha and beta bands in both groups, respectively. The relative power value in group B compared to group A was significantly higher for theta, alpha and beta bands, and lower for the delta band. The mean and median frequency values in group B was significantly higher for delta, theta and beta bands and lower for the alpha band. The study has shown that a medetomidine sedation protocol for feline EEG may offer a method for investigating bio-electrical cortical activity. The use of q-EEG analysis showed a decrease in high frequency bands and increased activity of the low frequency band in healthy cats under medetomidine sedation.
Resumo:
BACKGROUND: Hypnotic depth but not haemodynamic responsiveness is measured with EEG-based monitors. In this study we compared heart rate variability (HRV) in unstimulated patients and stimulation-induced HRV at different levels of anaesthesia. METHODS: A total of 95 ASA I or II patients were randomly assigned to five groups (Group 1: BIS 45(5), remifentanil 1 ng ml(-1); Group 2: BIS 45(5), remifentanil 2 ng ml(-1); Group 3: BIS 45(5), remifentanil 4 ng ml(-1); Group 4: BIS 30(5), remifentanil 2 ng ml(-1); Group 5: BIS 60(5), remifentanil 2 ng ml(-1)). A time- and frequency-domain analysis of the RR interval (RRI) from the electrocardiogram was performed. HRV before induction, before and after a 5 s tetanic stimulus of the ulnar nerve, and before and after tracheal intubation was compared between groups, between stimuli, and between responders to intubation [systolic arterial pressure (SAP) increase >20 mm Hg, a maximal heart rate (HR) after intubation >90 min(-1) or both] and non-responders (anova). RESULTS: Induction of anaesthesia significantly lowered HR and HRV. Mean RRI before stimulation was higher in G3 than in G1, G2, and G4 (P < 0.001), whereas the other HRV parameters were similar. Intubation induced a greater HRV response than tetanic stimulation. The mean RRI after intubation was lower in G3 compared with the other groups and the sd of the RRI after tetanic stimulation was lower in G3 compared with G5. Otherwise, unstimulated HRV and stimulation-induced HRV were similar in responders and non-responders. CONCLUSION: HRV parameters discriminate between awake and general anaesthesia, are different after tracheal intubation and a 5 s ulnar nerve stimulation, but do not discriminate between different levels of haemodynamic responsiveness during surgical anaesthesia.
Resumo:
Combined EEG/fMRI recordings offer a promising opportunity to detect brain areas with altered BOLD signal during interictal epileptic discharges (IEDs). These areas are likely to represent the irritative zone, which is itself a reflection of the epileptogenic zone. This paper reports on the imaging findings using independent component analysis (ICA) to continuously quantify epileptiform activity in simultaneously acquired EEG and fMRI. Using ICA derived factors coding for the epileptic activity takes into account that epileptic activity is continuously fluctuating with each spike differing in amplitude, duration and maybe topography, including subthreshold epileptic activity besides clear IEDs and may thus increase the sensitivity and statistical power of combined EEG/fMRI in epilepsy. Twenty patients with different types of focal and generalized epilepsy syndromes were investigated. ICA separated epileptiform activity from normal physiological brain activity and artifacts. In 16/20 patients, BOLD correlates of epileptic activity matched the EEG sources, the clinical semiology, and, if present, the structural lesions. In clinically equivocal cases, the BOLD correlates aided to attribute proper diagnosis of the underlying epilepsy syndrome. Furthermore, in one patient with temporal lobe epilepsy, BOLD correlates of rhythmic delta activity could be employed to delineate the affected hippocampus. Compared to BOLD correlates of manually identified IEDs, the sensitivity was improved from 50% (10/20) to 80%. The ICA EEG/fMRI approach is a safe, non-invasive and easily applicable technique, which can be used to identify regions with altered hemodynamic effects related to IEDs as well as intermittent rhythmic discharges in different types of epilepsy.