953 resultados para (13)C NMR
Resumo:
Poly(vinyl acetate peroxide) (PVACP) was prepared from vinyl acetate by free-radical-initiated oxidative polymerization. The polyperoxide was isolated and characterized by different spectroscopic methods. The extreme instability of PVACP was demonstrated by FTIR spectroscopy. The H-1- and C-13-NMR studies show the irregularities in the polyperoxide chain due to the cleavage reactions of the propagating peroxide radical. Thermal degradation studies using differential scanning calorimetry revealed that PVACP degrades at a lower temperature and the heat of degradation is in the same range as reported for other vinyl polyperoxides. (C) 1996 John Wiley & Sons, Inc.
Resumo:
A new hydroxy functionalized liquid crystalline (LC) polyazomethine has been synthesized by the solution polycondensation of a dialdehyde with a diamine. The polymer was characterized by IR, H-1-, and C-13-NMR spectroscopy. Studies on the liquid crystalline properties reveal the nematic mesomorphic behavior. This polymer functions as a polymeric chelate and forms a three-dimensional network structure through the metal complexation. Influence of various metals and their concentration on the liquid crystalline behavior of the network has been studied. Networks up to 30 mol % of the metal show LC phase transitions; above this the transitions are suppressed and the network behaves like an LC thermoset. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The anionic surfactant dodecyl sulfate (DDS) has been intercalated in an Mg-Al layered double hydroxide (LDH). Monolayer and bilayer arrangements of the alkyl chains of the intercalated surfactant can be engineered by tuning the Al/Mg ratio of the LDH. In both arrangements the anionic headgroup of the surfactant is tethered to the LDH sheets, and consequently translational mobility of the chains is absent. The degrees of freedom of the confined alkyl chains are restricted to changes in conformation. The effects of the arrangement of the intercalated surfactant chains on conformational order and dynamics have been,investigated by spectroscopic measurements and molecular dynamics simulations. Infrared, Raman, and C-13 NMR spectroscopies were used to investigate conformation of the alkyl chains in the monolayer and bilayer arrangements and variable contact time cross-polarization magic angle spinning (VCT CPMAS) NMR measurements to probe molecular motion. The alkyl chains in the monolayer arrangement of the intercalated DDS chains showed considerably greater conformational disorder and faster dynamics as compared to chains in the bilayer arrangement, in spite of the fact that the volume available per chain in the monolayer is smaller than that in the bilayer. Atomistic MD simulations of the two arrangements of the intercalated surfactant were carried out using an isothermal-isobaric ensemble. The simulations are able to reproduce the essential results of the experiment-greater conformational disorder and faster dynamics for the alkyl chains in the monolayer arrangement of the intercalated surfactant. The MD simulations show that these results are a consequence of the fact that the nature of conformational disorder in the two arrangements is different. In the monolayer arrangement the alkyl chains can sustain isolated gauche defects, whereas in the bilayer arrangement gauche conformers occur only as part of a kink a gauche(+) trans gauche(-) sequence.
Resumo:
Multiple quantum-single quantum correlation experiments are employed for spectral simplification and determination of the relative signs of the couplings. In this study, we have demonstrated the excitation of three nuclei, triple quantum coherences and discussed the information obtainable from such experiments. The experiments have been carried out on doubly labeled acetonitrile and fluoroacetonitrile aligned in liquid crystalline media. The experiment is advantageous in providing many spectral parameters from a single experiment. The coherence pathways involved in the pulse sequence are described using product operators. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A series of di- and tripeptide-based ebselen analogues has been synthesized. The compounds were characterized by H-1, C-13, and Se-77 NMR spectroscopy and mass spectral techniques. The glutathione peroxidase (GPx)-like antioxidant activity has been studied by using H2O2, tert-butyl hydroperoxide (tBuOOH), and cumene hydroperoxide (Cum-OOH) as substrates, and glutathione (GSH) as a co-substrate. Although all the peptide-based compounds have a selenazole ring similar to that of ebselen, the GPx activity of these compounds highly depends on the nature of the peptide moiety attached to the nitrogen atom of the selenazole ring. It was observed that the introduction of a phenylalanine (Phe) amino acid residue in the N-terminal reduces the activity in all three peroxide systems. On the other hand, the introduction of aliphatic amino acid residues such as valine (Val) significantly enhances the GPx activity of the ebselen analogues. The difference in the catalytic activity of dipeptide-based ebselen derivatives can be ascribed mainly to the change in the reactivity of these compounds toward GSH and peroxide. Although the presence of the Val-Ala-CO2Me moiety facilitates the formation of a catalytically active selenol species, the reaction of ebselen analogues that has a Phe-Ile-CO2Me residue with GSH does not generate the corresponding selenol. To understand the antioxidant activity of the peptide-based ebselen analogues in the absence of GSH, these compounds were studied for their ability to inhibit peroxynitrite (PN)-mediated nitration of bovine serum albumin (BSA) and oxidation of dihydrorhodamine 123. In contrast to the GPx activity, the PN-scavenging activity of the Phe-based peptide analogues was found to be comparable to that of the Val-based compounds. However, the introduction of an additional Phe residue to the ebselen analogue that had a Val-Ala dipeptide significantly reduced the potency of the parent compound in PN-mediated nitration.
Resumo:
The higher substrate and chiral auxiliary concentration is a pre-requisite to obtain efficient separation of H-1 NMR signals of enantiomers. The higher concentration of chiral lanthanide shift reagents provides broadened spectral lines resulting in a severe loss of resolution between the enantiomer resonances. In order to circumvent such difficulties, herein we present the application and the usefulness of a selective F-1 decoupled correlation (COSY) experiment which yields proton decoupled proton spectra in the indirect dimension. The potentiality of the experiment is demonstrated on several chiral compounds possessing different functional groups, employing either a lanthanide shift reagent or a solvating reagent as chiral auxiliaries. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Reaction of SbPh(2)Cl(3) (1 mol) with the silver salt of dicyclohexylphosphinic acid (2 mol) afforded {SbPh(2)Cl[O2P(C6H11)(2)]}O-2 1, a similar reaction with AgO2P(C8H15)(2) gave a product formulated as {SbPh(2)Cl[O2P(C8H15)(2)]}O-2 2. Similar reactions with silver carboxylates (1:3 stoichiometry) led to the crystalline derivatives [SbPh(2)(O(2)CR)(2)]O-2 (R = Ph 3, CHPh(2) 4, 2,4,6-Me(3)C(6)H(2) 5, 2-MeC(6)H(4) 6 or 4-MeC(6)H(4) 7), whereas the 1:2 reaction afforded crystalline SbPh(2)Cl(O(2)CR)(2) (R = Ph 8, 2-MeC(6)H(4) 9 or 4-MeC(6)H(4) 10). Interconversion of the previously known compounds [SbPh(2)(O(2)CMe)(2)]O and Sb(4)Ph(8)O(6) . 3MeCO(2)H was achieved and established by H-1 NMR spectroscopy. Compounds 1 and 3 were further characterized by X-ray diffraction; the antimony in 1 is six-co-ordinated with bridging phosphinates whereas in 3 it is seven-co-ordinated with chelating benzoates. Short Sb-O (oxo) distances (1.923 Angstrom) and near linearity at the bridging ox
Resumo:
The 1H and 13C NMR spectra of N-(2-pyridinyl)-, N-(4-methyl2-pyridinyl)-, and N-(6-methyl-2-pyridinyl)-3-pyridine-carboxamides (1�3, respectively) and 3-pyridinecarboxamide (4) in different solvents have been analysed using COSY, HETCOR, chemical shift and coupling constant correlations. The conformations of 1�4 have been obtained by utilizing the NMR spectra, NOE experiments and MINDO/3 calculations. In dilute solutions, the 2-pyridyl ring is coplanar with the amide group while the 3-pyridyl ring is apparently not. Compounds 1�3 dimerize through cooperative hydrogen bonding in concentrated CDCl3 solution (approximately 0.1 M) and the structure of the dimer resembles some of the DNA base-pairs. Hydrogen bonding between N---H and the solvent molecules hinders dimerization in (CD3)2CO and CD3CN.
Resumo:
Activation of the B-H sigma-bond of amine-boranes on the chromium(0) center of arene chromium tricarbonyl complexes (eta(6)-arene) Cr(CO)(3) (arene = fluorobenzene, 1a; benzene, 1b and mesitylene, 1c) has been studied. Photolysis of 1b in presence of ammonia-borane (H3N center dot BH3, AB) and tert-butylamine-borane ((BuH2N)-Bu-t center dot BH3, TBAB) resulted in H-2 evolution and precipitation of a BNHx polymer. On the other hand, photolysis in the presence of trimethylamine-borane (Me3N center dot BH3, TMAB) resulted in the formation of a sigma-borane complex (2) along with Cr(CO)(5)(eta(1)-HBH2 center dot NMe3) (3). The sigma-borane complexes (eta(6)-arene) Cr-( CO)(2)(eta(1)-HBH2 center dot NMe3) (arene = fluorobenzene, 2a; benzene, 2b and mesitylene, 2c) were characterized in solution by H-1, B-11, and C-13 NMR spectroscopy. Electron withdrawing substituents on the arene ring provide the more stable sigma-borane moiety in this series of complexes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A new series of multielement flame-retardant plasticizers containing polyethylene stibinite phosphate esters have been prepared by bulk polymerization from ethylene glycol with various antimony (III) aryloxydichlorides and arylphosphorodichloridates possessing various combinations of substituent [Cl,Br,NO2]. All the polymers are pink-coloured viscous fluids. They were characterized by inherent viscosity, density, IR, H-1, C-13 and P-31 NMR spectroscopy. The thermal behaviour of the polymers was compared by thermogravimetric analysis and correlated with their structures. The flammability studies were carried out by the limiting oxygen index test. The polymers containing P, Sb, N and Pr elements in their backbone show superior thermal-and flame-retardant characteristics than the other polymers. A comparative study was carried out with one of the synthesized polymers as a polymeric flame-retardant additive to plasticized PVC. The results showed improved LOI and mechanical properties to that of the conventional flame-retardant additive composition. (C) 1997 Elsevier Science Ltd.
Resumo:
The triphenylphosphine deoxygenation of the polyperoxides, poly(styrene peroxide), poly(methyl methacrylate peroxide), and poly(alpha-methylstyrene peroxide) proceed via the phosphorane intermediates, which in the presence of moisture hydrolyze to give the respective diols. At higher temperatures and under dry conditions the phosphorane decomposes into epoxide and triphenylphosphine oxide. The reaction has been studied by H-1-, C-13-, and P-31-NMR spectroscopy. The results obtained are consistent with a concerted insertion of the biphile, triphenylphosphine, into the peroxy bond and this reaction pathway seems to be new as far as the chemistry of polyperoxides is concerned. Though the aim of this investigation was to test the selective deoxygenation of polyperoxide by triphenylphosphine as a method of preparing polyethers, it turned out to be a fruitful method of synthesis of stereospecific diols. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Mesogens containing four rings in the main core can accommodate one terminal and two nearby lateral chains on each outside aromatic ring. These compounds containing six chains present an enantiotropic nematic range which is influenced by the rigidity of the links. The conformational behaviour of the first methyleneoxy group within the chains was investigated by one and two dimensional C-13 NMR. The sign of the jump in chemical shifts when entering the nematic phase indicates the folding of each lateral branch. Dipolar oscillations during cross-polarization contact provide the values of the bond order parameter. The two First lateral fragments do not behave in the same way, demonstrating the influence of the fragment along which the chain is back: folded.
Resumo:
Three-dimensional (3D) structure of a hairpin DNA d-CTAGAGGATCCTTTUGGATCCT (22mer; abbreviated as U4-hairpin), which has a uracil nucleotide unit at the fourth position from the 5' end of the tetra-loop has been solved by NMR spectroscopy. The H-1 resonances of this hairpin have been assigned almost completely. NMR restrained molecular dynamics and energy minimisation procedures have been used to describe the 3D structure of the U4 hairpin. This study establishes that the stem of the hairpin adopts a right handed B-DNA conformation while the T-12 and U-15 nucleotide stack upon 3' and 5' ends of the stem, respectively. Further, T-14 stacks upon both T-12 and U-15 while T-13 partially stacks upon T-14. Very weak stacking interaction is observed between T-13 and T-12. All the individual nucleotide bases adopt 'anti' conformation with respect to their sugar moiety. The turning phosphate in the loop is located between T-13 and T-14. The stereochemistry of U-15 mimics the situation where uracil would stack in a B-DNA conformation. This could be the reason as to why the U4-hairpin is found to be the best substrate for its interaction with uracil DNA glycosylase (UDG) compared to the other substrates in which the uracil is at the first, second and third positions of the tetra-loop from its 5' end, as reported previously.
Resumo:
Copper(I)-dppm complexes encapsulating the oxyanions ClO4-, NO3-, CH3C6H4CO2-, SO42-, and WO42- have been synthesized either by reduction of the corresponding Cu(II) salts and treatment with dppm, or by treating the complex [Cu-2(dppm)(2)(dmcn)(3)](BF4)(2) (1) (dmcn = dimethyl cyanamide) with the respective anion. The isolated complexes [Cu-2(dppm)(2)(dmcn)(2)(ClO4)] (ClO4) (2), [Cu-2(dppm)(2)(dmcn)(2)(NO3)] (NO3) (3), Cu-2(dppm)(2)(NO3)(2) (4), [Cu-2(dppm)(2)(CH3C6H4CO2)(2)]dmcn.2THF (5), Cu-2(dppm)(2)(SO4) (6), and [Cu-3(dppm)(3)(Cl)(WO4)] 0.5H(2)O (7) have been characterized by IR, H-1 and P-31{H-1} NMR, UV-vis, and emission spectroscopy. The solid-state molecular structure of complexes 1, 2, 4, and 7 were determined by single-crystal X-ray diffraction. Pertinent crystal data are as follows: for 1, monoclinic P2(1)/c, a = 11.376(10) Angstrom, b = 42.503(7) Angstrom, c = 13.530(6) Angstrom, beta = 108.08(2)degrees, V = 6219(3) Angstrom(3), Z = 4; for 2, monoclinic P2(1)/c, a = 21.600(3) Angstrom, b = 12.968(3) Angstrom, c = 23.050(3) Angstrom, beta = 115.97(2)degrees, V = 5804(17) Angstrom(3), Z = 4; for 4, triclinic
, a = 10.560(4) Angstrom, b = 10.553(3) Angstrom, c = 22.698(3) Angstrom, alpha = 96.08(2)degrees, beta = 96.03(2)degrees, gamma = 108.31(2)degrees, V = 2362(12) Angstrom(3), Z = 2; and for 7, orthorhombic P2(1)2(1)2(1), a = 14.407(4) Angstrom, b = 20.573(7) Angstrom, c = 24.176(6) Angstrom, V = 7166(4) Angstrom(3), Z = 4. Analyses of the crystallographic and spectroscopic data of these complexes reveal the nature of interactions between the Cu-I-dppm core and oxyanion. The anchoring of the oxyanion to the Cu-n(dppm)(n) unit is primarily through coordination to the metal, but the noncovalent C-H ... O interactions between the methylene and phenyl protons of the dppm and oxygen atoms of the oxyanion play a significant role. The solid-state emission spectra for complexes 1-6 are very similar but different from 7. In CDCl3 solution, addition of ClO4- or NO3- (as their tetrabutylammonium salts) to 1 establishes a rapid equilibrium between the anion-complexed and uncomplexed forms. The association constant values for ClO4- and NO3- have been estimated from the P-31{H-1} NMR spectra.
Resumo:
Several pi-electron rich fluorescent aromatic compounds containing trimethylsilylethynyl functionality have been synthesized by employing Sonogashira coupling reaction and they were characterized fully by NMR (H-1, C-13)/IR spectroscopy. Incorporation of bulky trimethylsilylethynyl groups on the peripheral of the fluorophores prevents self-quenching of the initial intensity through pi-pi interaction and thereby maintains the spectroscopic stability in solution. These compounds showed fluorescence behavior in chloroform solution and were used as selective fluorescence sensors for the detection of electron deficient nitroaromatics. All these fluorophores showed the largest quenching response with high selectivity for nitroaromatics among the various electron deficient aromatic compounds tested. Quantitative analysis of the fluorescence titration profile of 9,10-bis(trimethylsilylethynyl) anthracene with picric acid provided evidence that this particular fluorophore detects picric acid even at ppb level. A sharp visual detection of 2,4,6-trinitrotoluene was observed upon subjecting 1,3,6,8-tetrakis (trimethylsilylethynyl) pyrene fluorophore to increasing quantities of 2,4,6-trinitrotoluene in chloroform. Furthermore, thin film of the fluorophores was made by spin coating of a solution of 1.0 x 10(-3) M in chloroform or dichloromethane on a quartz plate and was used for the detection of vapors of nitroaromatics at room temperature. The vapor-phase sensing experiments suggested that the sensing process is reproducible and quite selective for nitroaromatic compounds. Selective fluorescence quenching response including a sharp visual color change for nitroaromatics makes these fluorophores as promising fluorescence sensory materials for nitroaromatic compounds (NAC) with a detection limit of even ppb level as judged with picric acid.