950 resultados para (001)GAAS SUBSTRATE
Resumo:
In this contribution, angle-resolved X-ray photoelectron spectroscopy is used to explore the extension and nature of a GaAs/GaInP heterointerface. This bilayer structure constitutes a very common interface in a multilayered III-V solar cell. Our results show a wide indium penetration into the GaAs layer, while phosphorous diffusion is much less important. The physico-chemical nature of such interface and its depth could deleteriously impact the solar cell performance. Our results probe the formation of spurious phases which may profoundly affect the interface behavior.
Resumo:
The present work aims to assess Laser-Induced Plasma Spectrometry (LIPS) as a tool for the characterization of photovoltaic materials. Despite being a well-established technique with applications to many scientific and industrial fields, so far LIPS is little known to the photovoltaic scientific community. The technique allows the rapid characterization of layered samples without sample preparation, in open atmosphere and in real time. In this paper, we assess LIPS ability for the determination of elements that are difficult to analyze by other broadly used techniques, or for producing analytical information from very low-concentration elements. The results of the LIPS characterization of two different samples are presented: 1) a 90 nm, Al-doped ZnO layer deposited on a Si substrate by RF sputtering and 2) a Te-doped GaInP layer grown on GaAs by Metalorganic Vapor Phase Epitaxy. For both cases, the depth profile of the constituent and dopant elements is reported along with details of the experimental setup and the optimization of key parameters. It is remarkable that the longest time of analysis was ∼10 s, what, in conjunction with the other characteristics mentioned, makes of LIPS an appealing technique for rapid screening or quality control whether at the lab or at the production line.
Resumo:
In this work, we analyze the influence of the processing pressure and the substrate–target distance on the synthesis by reactive sputtering of c-axis oriented polycrystalline aluminum nitride thin films deposited on Si(100) wafers. The crystalline quality of AlN has been characterized by high-resolution X-ray diffraction (HR-XRD). The films exhibited a very high degree of c-axis orientation especially when a low process pressure was used. After growth, residual stress measurements obtained indirectly from radius of curvature measurements of the wafer prior and after deposition are also provided. Two different techniques are used to determine the curvature—an optically levered laser beam and a method based on X-ray diffraction. There is a transition from compressive to tensile stress at a processing pressure around 2 mTorr. The transition occurs at different pressures for thin films of different thickness. The degree of c-axis orientation was not affected by the target–substrate distance as it was varied in between 30 and 70 mm.
Resumo:
Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on silicon for photovoltaic applications. One of the first issues to be considered in the development of this structure will be the strategy to create the silicon emitter of the bottom subcell. In this study, we explore the possibility of forming the silicon emitter by phosphorus diffusion (i.e. exposing the wafer to PH3 in a MOVPE reactor) and still obtain good surface morphologies to achieve a successful III-V heteroepitaxy as occurs in conventional III-V on germanium solar cell technology. Consequently, we explore the parameter space (PH3 partial pressure, time and temperature) that is needed to create optimized emitter designs and assess the impact of such treatments on surface morphology using atomic force microscopy. Although a strong degradation of surface morphology caused by prolonged exposure of silicon to PH3 is corroborated, it is also shown that subsequent anneals under H-2 can recover silicon surface morphology and minimize its RMS roughness and the presence of pits and spikes.
Resumo:
In this work we present the results and analysis of a 10 MeV proton irradiation experiment performed on III-V semiconductor materials and solar cells. A set of representative devices including lattice-matched InGaP/GaInAs/Ge triple junction solar cells and single junction GaAs and InGaP component solar cells and a Ge diode were irradiated for different doses. The devices were studied in-situ before and after each exposure at dark and 1 sun AM0 illumination conditions, using a solar simulator connected to the irradiation chamber through a borosilicate glass window. Ex-situ characterization techniques included dark and 1 sun AM0 illumination I-V measurements. Furthermore, numerical simulation of the devices using D-AMPS-1D code together with calculations based on the TRIM software were performed in order to gain physical insight on the experimental results. The experiment also included the proton irradiation of an unprocessed Ge solar cell structure as well as the irradiation of a bare Ge(100) substrate. Ex-situ material characterization, after radioactive deactivation of the samples, includes Raman spectroscopy and spectral reflectivity.
Resumo:
We introduce one trivial but puzzling solar cell structure. It consists of a high bandgap pn junction (top cell) grown on a substrate of lower bandgap. Let us assume, for example, that the bandgap of the top cell is 1.85 eV (Al 0.3Ga 0.7As) and the bandgap of the substrate is 1.42 eV (GaAs). Is the open-circuit of the top cell limited to 1.42 V or to 1.85 V? If the answer is ldquo1.85 Vrdquo we could then make the mind experiment in which we illuminate the cell with 1.5 eV photons (notice these photons would only be absorbed in the substrate). If we admit that these photons can generate photocurrent, then because we have also admitted that the voltage is limited to 1.85 V, it might be possible that the electron-hole pairs generated by these photons were extracted at 1.6 V for example. However, if we do so, the principles of thermodynamics could be violated because we would be extracting more energy from the photon than the energy it initially had. How can we then solve this puzzle?
Resumo:
The aim of this study was to determine the capability of ceMRI based signal intensity (SI) mapping to predict appropriate ICD therapies after PVTSA.
Resumo:
The aim of this work is to provide the necessary methods to register and fuse the endo-epicardial signal intensity (SI) maps extracted from contrast-enhanced magnetic resonance imaging (ceMRI) with X-ray coronary ngiograms using an intrinsic registrationbased algorithm to help pre-planning and guidance of catheterization procedures. Fusion of angiograms with SI maps was treated as a 2D-3D pose estimation, where each image point is projected to a Plücker line, and the screw representation for rigid motions is minimized using a gradient descent method. The resultant transformation is applied to the SI map that is then projected and fused on each angiogram. The proposed method was tested in clinical datasets from 6 patients with prior myocardial infarction. The registration procedure is optionally combined with an iterative closest point algorithm (ICP) that aligns the ventricular contours segmented from two ventriculograms.
Resumo:
ABSTRACT Evaluating the reliability, warranty period, and power degradation of high concentration solar cells is crucial to introducing this new technology to the market. The reliability of high concentration GaAs solar cells, as measured in temperature accelerated life tests, is described in this paper. GaAs cells were tested under high thermal accelerated conditions that emulated operation under 700 or 1050 suns over a period exceeding 10 000 h. Progressive power degradation was observed, although no catastrophic failures occurred. An Arrhenius activation energy of 1.02 eV was determined from these tests. The solar cell reliability [R(t)] under working conditions of 65°C was evaluated for different failure limits (1–10% power loss). From this reliability function, the mean time to failure and the warranty time were evaluated. Solar cell temperature appeared to be the primary determinant of reliability and warranty period, with concentration being the secondary determinant. A 30-year warranty for these 1 mm2-sized GaAs cells (manufactured according to a light emitting diode-like approach) may be offered for both cell concentrations (700 and 1050 suns) if the solar cell is operated at a working temperature of 65°C.
Resumo:
A high-power high-efficiency laser power transmission system at 100m based on an optimized multi-cell GaAs converter capable of supplying 9.7W of electricity is demonstrated. An I-V testing system integrated with a data acquisition circuit and an analysis software is designed to measure the efficiency and the I-V characteristics of the laser power converter (LPC). The dependencies of the converter’s efficiency with respect to wavelength, laser intensity and temperature are analyzed. A diode laser with 793nm of wavelength and 24W of power is used to test the LPC and the software. The maximum efficiency of the LPC is 48.4% at an input laser power of 8W at room temperature. When the input laser power is 24W (laser intensity of 60000W/m2), the efficiency is 40.4% and the output voltage is 4 V. The overall efficiency from electricity to electricity is 11.6%.
Resumo:
In recent years, all the operating principles of intermediate band behaviour have been demonstrated in InAs/GaAs quantum dot (QD) solar cells. Having passed this hurdle, a new stage of research is underway, whose goal is to deliver QD solar cells with efficiencies above those of state-of-the-art single-gap devices. In this work, we demonstrate that this is possible, using the present InAs/GaAs QD system, if the QDs are made to be radiatively dominated, and if absorption enhancements are achieved by a combination of increasing the number of QDs and light trapping. A quantitative prediction is also made of the absorption enhancements required, suggesting that a 30 fold increase in the number of QDs and a light trapping enhancement of 10 are sufficient. Finally, insight is given into the relative merits of absorption enhancement via increasing QD numbers and via light trapping.
Resumo:
AlGaAs/GaAs-based laser power PV converters intended for operation with high-power (up to 100 W/cm(2)) radiation were fabricated by LPE and MOCVD techniques. Monochromatic (lambda = 809 nm) conversion efficiency up to 60% was measured at cells with back surface field and low (x = 0.2) Al concentration 'window'. Modules with a voltage of 4 V and the efficiency of 56% were designed and fabricated.
Resumo:
Different approaches have arisen aiming to exceed the Shockley-Queisser efficiency limit of solar cells. Particularly, stacking QD layers allows exploiting their unique properties, not only for intermediate-band solar cells or multiple exciton generation, but also for tandem cells in which the tunability of QD properties through the capping layer (CL) could be very useful.
Resumo:
Different approaches have recently arisen aiming to exceed the Shockley-Queisser efficiency limit. Particularly, the use of self-organized quantum dots (QD) has been recently proposed in order to introduce new states within the barrier material, which enhances the subband gap absorption yielding a photocurrent increase. Stacking QD layers allows exploiting their unique properties for intermediate-band solar cells (SC) or tandem cells.In all these cases, tuning the QD properties by modifying the capping layer (CL) can be very useful.
Resumo:
Piezoelectric AlN layer grain orientation, grown by room temperature reactive sputtering, is analyzed by transmission electron microscopy (TEM).Two types of samples are studied: (i) AlN grown on well-polished NCD (nano-crystalline diamond) diamond, (ii) AlN grown on an up-side down NCD layer previously grown on a Si substrate, i.e. diamond surface as smooth as that of Si substrates. The second set of sample show a faster lignment of their AlN grain caxis attributed to it smoother diamond free surface. No grain orientation relationship between diamond substrate grain and the AlN ones is evidenced, which seems to indicate the preponderance role of the surface substrate state.