928 resultados para "Insulin-Like Growth Factor II"
Resumo:
Aldosterone is an important factor supporting placental growth and fetal development. Recently, expression of placental growth factor (PlGF) has been observed in response to aldosterone exposure in different models of atherosclerosis. Thus, we hypothesized that aldosterone up-regulates growth-adaptive angiogenesis in pregnancy, via increased placental PlGF expression. We followed normotensive pregnant women (n = 24) throughout pregnancy and confirmed these results in a second independent first trimester cohort (n = 36). Urinary tetrahydroaldosterone was measured by gas chromatography-mass spectrometry and corrected for creatinine. Circulating PlGF concentrations were determined by ELISA. Additionally, cultured cell lines, adrenocortical H295R and choriocarcinoma BeWo cells, as well as primary human third trimester trophoblasts were tested in vitro. PlGF serum concentrations positively correlated with urinary tetrahydroaldosterone corrected for creatinine in these two independent cohorts. This observation was not due to PlGF, which did not induce aldosterone production in cultured H295R cells. On the other hand, PlGF expression was specifically enhanced by aldosterone in the presence of forskolin (p < 0.01) in trophoblasts. A pronounced stimulation of PlGF expression was observed with reduced glucose concentrations simulating starvation (p < 0.001). In conclusion, aldosterone stimulates placental PlGF production, enhancing its availability during human pregnancy, a response amplified by reduced glucose supply. Given the crucial role of PlGF in maintaining a healthy pregnancy, these data support a key role of aldosterone for a healthy pregnancy outcome.
Resumo:
BACKGROUND Strategies to improve risk prediction are of major importance in patients with heart failure (HF). Fibroblast growth factor 23 (FGF-23) is an endocrine regulator of phosphate and vitamin D homeostasis associated with an increased cardiovascular risk. We aimed to assess the prognostic effect of FGF-23 on mortality in HF patients with a particular focus on differences between patients with HF with preserved ejection fraction and patients with HF with reduced ejection fraction (HFrEF). METHODS AND RESULTS FGF-23 levels were measured in 980 patients with HF enrolled in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study including 511 patients with HFrEF and 469 patients with HF with preserved ejection fraction and a median follow-up time of 8.6 years. FGF-23 was additionally measured in a second cohort comprising 320 patients with advanced HFrEF. FGF-23 was independently associated with mortality with an adjusted hazard ratio per 1-SD increase of 1.30 (95% confidence interval, 1.14-1.48; P<0.001) in patients with HFrEF, whereas no such association was found in patients with HF with preserved ejection fraction (for interaction, P=0.043). External validation confirmed the significant association with mortality with an adjusted hazard ratio per 1 SD of 1.23 (95% confidence interval, 1.02-1.60; P=0.027). FGF-23 demonstrated an increased discriminatory power for mortality in addition to N-terminal pro-B-type natriuretic peptide (C-statistic: 0.59 versus 0.63) and an improvement in net reclassification index (39.6%; P<0.001). CONCLUSIONS FGF-23 is independently associated with an increased risk of mortality in patients with HFrEF but not in those with HF with preserved ejection fraction, suggesting a different pathophysiologic role for both entities.
Resumo:
Quiescent human B cells are postulated to go through activation and proliferation phases before undergoing differentiative phase for immunoglobulin secretion. The present studies address some of the aspects of activation and proliferation phase of normal human B cells. The definitions of signals responsible for B cell activation and proliferation resulted in the development of a highly specific, reproducible B cell growth factor (BCGF) assay. This BCGF bioassay utilizes activation by rabbit anti-human IgM-antibody. The functional specificity of this assay for measuring BCGF activity was demonstrated by the finding that target B cells proliferated but did not differentiate. The factor specificity was determined by specific absorption of BCGF by anti-IgM activated B cells. This assay was utilized for the studies of T-B cell collaboration and the essential function of monocytes in the production and/or release of B cell growth factor in a syngeneic in vitro system. It is apparent that highly purified T cells are poor producers of BCGF by themselves and require monocytes to secrete significant quantities of BCGF upon PHA stimulation. Macrophage soluble factor, Interleukin 1, is capable of replacing monocyte function for the release of BCGF by activated T cells. In our studies, B cells are incapable to function as accessory cells to replace monocyte function. Normal B cells are also not capable of producing BCGF under our experimental observations. However, the addition of these B cells at an optimum cell density (T:B ratio 1:1) doubles the monocyte dependent release of BCGF by syngeneic T cells. The augmentative role of B cells is expanded to understand the mechanism of BCGF release by T cells. It is observed from our studies that DR antigen of B cell surface is involved in the release of BCGF. The functional difference between DR of B cells and monocytes is observed as IL-1 could replace DR-treated monocytes whereas failed to replace DR-treated B cells for the release of BCGF by T cells. This functional difference may be attributed to the reported microheterogeneity in DR of B cells and monocytes. The addition of irradiated B cells increased the monocyte dependent T cell proliferation, suggesting the increase of T cell pool for BCGF release. In summary, the development of a biological assay specific for B cell growth factor led to the delineation of an interesting role of B cells in the release of its own growth factor by T cells. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^
Resumo:
The histology of healing in a tooth extraction socket has been described in many studies. The focus of research in bone biology and healing is now centered on molecular events that regulate repair of injured tissue. Rapid progress in cellular and molecular biology has resulted in identification of many signaling molecules (growth factors and cytokines) associated with formation and repair of skeletal tissues. Some of these include members of the transforming growth factor-β superfamily (including the bone morphogenetic proteins), fibroblast growth factors, platelet derived growth factors and insulin like growth factors. ^ Healing of a tooth extraction socket is a complex process involving tissue repair and regeneration. It involves chemotaxis of appropriate cells into the wound, transformation of undifferentiated mesenchymal cells to osteoprogenitor cells, proliferation and differentiation of committed bone forming cells, extracellular matrix synthesis, mineralization of osteoid, maturation and remodeling of bone. Current data suggests that these cellular events are precisely controlled and regulated by specific signaling molecules. A plethora of cytokines; have been identified and studied in the past two decades. Some of these like transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF) and fibroblast growth factors (FGFs) are well conserved proteins involved in the initial response to injury and repair in soft and hard tissue. ^ The purpose of this study was to characterize the spatial and temporal localization of TGF-βl, VEGF, PDGF-A, FGF-2 and BMP-2, and secretory IgA in a tooth extraction socket model, and evaluate correlation of spatial and temporal changes of these growth factors to histological events. The results of this study showed positive correlation of histological events to spatial and temporal localization of TGF-β1, BMP-2, FGF-2, PDGF-A, and VEGF in a rabbit tooth extraction model. ^
Resumo:
The heparan sulfate (HS)-fibroblast growth factor (FGF) signaling system is a ubiquitous regulator that senses local environmental changes and mediates cell-to-cell communication. This system consists of three mutually interactive components. These are regulatory polypeptides (FGF), FGF receptor (FGFR) and heparan sulfate proteoglycans (FGFRHS). All four FGFR genes are expressed in the adult liver. Expression of the FGFR1–3 genes is generally associated with non-parenchymal cells while expression of the FGFR4 gene is associated with parenchymal hepatocytes. We showed that livers of mice lacking FGFR4 exhibited normal morphology and regenerated normally in response to partial hepatectomy. However, the FGFR4 (−/−) mice exhibited depleted gallbladders, an elevated bile acid pool and elevated excretion of bile acids. Cholesterol- and bile acid-controlled liver cholesterol 7α-hydroxylase (Cyp7a), the limiting enzyme for bile acid synthesis, was elevated, unresponsive to dietary cholesterol, but repressed normally by dietary cholate. These results indicated that FGFR4 was not directly involved in liver growth but exerted negative control on liver bile acid synthesis. This was confirmed in transgenic mice overexpressing the constitutively active human FGFR4 in livers. The transgenic mice exhibited decreased fecal bile acid excretion, bile acid pool size, and expression of Cyp7a. Introduction of this constitutively active human FGFR4 into FGFR4 (−/−) mice restored the inhibition of bile acid synthesis. Activation of the c-Jun N-terminal Kinase (JNK) pathway by FGFR4 correlated with the repressive effect on bile acid synthesis. ^ To determine whether FGFR4 played a broader role in liver-specific metabolic function, we examined the impact of both acute and chronic exposure to CCl 4 in FGFR4 (−/−) mice. Following acute CCl4 exposure, the FGFR4 (−/−) mice exhibited accelerated liver injury, a significant increase in liver mass and delayed hepatolobular repair, with no apparent effect on liver cell proliferation and restoration of cellularity. Chronic CCl4 exposure resulted in severe fibrosis in livers of FGFR4 (−/−) mice compared to normal mice. Analysis at both mRNA and protein levels indicated an 8 hr delay in FGFR4-deficient mice in the down-regulation of cytochrome P450 2E1 (CYP2E1) protein, the major enzyme whose products underlie CCl 4-induced injury. These results show that hepatocyte FGFR4 protects against acute and chronic insult to the liver and prevents accompanying fibrosis. ^ Of the 23 FGF polypeptides, FGF1 and FGF2 are present at significant levels in the liver. To determine whether FGF1 and FGF2 played a role in CCl 4-induced liver injury and fibrosis, we examined the impact of both acute and chronic exposure to CCl4 in both wild-type and FGF1-FGF2 double-knockout mice. Following acute CCl4 exposure, FGF1(−/−)FGF2(−/−) mice exhibited accelerated liver injury, overall normal liver growth and repair, and decreased liver collagen α1(I) induction. Liver fibrosis resulting from chronic CCl4 exposure was markedly decreased in livers of FGF1(−/−)FGF2(−/−) mice compared to wild-type mice. This study suggests a role for FGF1 and FGF2 in hepatic fibrogenesis. ^ In summary, our three part study shows that specific components of the ubiquitous HS-FGF signaling family in the liver context interfaces with metabolite- and xenobiotic-controlled networks to regulate liver function, but has no apparent direct effect on liver cell growth. ^
Resumo:
Submitted in partial fulfillment of the requirements for a Certificate in Orthodontics, Dept. of Orthodontics, University of Connecticut Health Center, 1986
Resumo:
This paper examines cross-country patterns of economic growth by estimating a stochastic frontier production function for 80 developed and developing countries and decomposing output change into factor accumulation, total factor productivity growth, and production efficiency improvement. In addition, this paper incorporates the quality of inputs in analyzing output growth, where the productivity of capital depends on its average age, while the productivity of labor depends on its average level of education. Our growth decomposition involves five geographic regions - Africa, East Asian, Latin America, South Asia, and the West. Factor growth, especially capital accumulation, generally proves much more important than either the improved quality of factors or total factor productivity growth in explaining output growth. The quality of capital positively and significantly affects output growth in all groups. The quality of labor, however, only possesses a positive and significant effect on output growth in Africa, East Asia, and the West. Labor quality owns a negative and significant effect in Latin America and South Asia.
Resumo:
Objective. To determine whether transforming growth factor beta (TGF-β) receptor blockade using an oral antagonist has an effect on cardiac myocyte size in the hearts of transgenic mice with a heart failure phenotype. ^ Methods. In this pilot experimental study, cardiac tissue sections from the hearts of transgenic mice overexpressing tumor necrosis factor (MHCsTNF mice) having a phenotype of heart failure and wild-type mice, treated with an orally available TGF-β receptor antagonist were stained with wheat germ agglutinin to delineate the myocyte cell membrane and imaged using fluorescence microscopy. Using MetaVue software, the cardiac myocyte circumference was traced and the cross sectional area (CSA) of individual myocytes were measured. Measurements were repeated at the epicardial, mid-myocardial and endocardial levels to ensure adequate sampling and to minimize the effect of regional variations in myocyte size. ANOVA testing with post-hoc pairwise comparisons was done to assess any difference between the drug-treated and diluent-treated groups. ^ Results. There were no statistically significant differences in the average myocyte CSA measured at the epicardial, mid-myocardial or endocardial levels between diluent treated littermate control mice, drug treated normal mice, diluent-treated transgenic mice and drug-treated transgenic mice. There was no difference between the average pan-myocardial cross sectional area between any of the four groups mentioned above. ^ Conclusions. TGF-β receptor blockade using oral TGF-β receptor antagonist does not alter myocyte size in MHCsTNF mice that have a phenotype of heart failure. ^
Resumo:
Approximately 12,000 new cases of spinal cord injury (SCI) are added each year to the estimated 259,000 Americans living with SCI. The majority of these patients return to society, their lives forever changed by permanent loss of sensory and motor function. While there are no FDA approved drugs for the treatment of SCI or a universally accepted standard therapy, the current though controversial treatment includes the delivery of high dosages of the corticosteroid methyliprednisolone sodium succinate, surgical interventions to stabilize the spinal column, and physical rehabilitation. It is therefore critically important to fully understand the pathology of injury and determine novel courses and rationally-based therapies for SCI. ^ Vascular endothelial growth factor (VEGF) is an attractive target for treating central nervous system (CNS) injury and disease because it has been shown to influence angiogenesis and neuroprotection. Preliminary studies have indicated that increased vasculature may be associated with functional recovery; therefore exogenous delivery of a pro-angiogenic growth factor such as VEGF may improve neurobehavioral outcome. In addition, VEGF may provide protection from secondary injury and result in increased survival and axonal sprouting. ^ In these studies, SCI rats received acute intraspinal injections of VEGF, the antibody to VEGF, or vehicle control. The effect of these various agents was investigated using longitudinalmulti-modal magnetic resonance imaging (MRI), neuro- and sensory behavioral assays, and end point immunohistochemistry. We found that rats that received VEGF after SCI had increased tissue sparing and improved white matter integrity at the earlier time points as shown by advanced magnetic resonance imaging (MRI) techniques. However, these favorable effects of VEGF were not maintained, suggesting that additional treatments with VEGF at multiple time points may be more beneficial, Histological examinations revealed that VEGF treatment may result in increased oligodendrogenesis and therefore may eventually lead to remyelination and improved functional outcome. ^ On the neurobehavioral studies, treatments with VEGF and Anti-VEGF did not significantly affect performance on tests of open-field locomotion, grid walk, inclined plane, or rearing. However, VEGF treatment resulted in significantly increased incidence of chronic neuropathic pain. This phenomenon could possibly be attributed to the fact that VEGF treatment may promote axonal sprouting and also results in tissue sparing, thereby providing a substrate for the growth of new axons. New connections made by these sprouting axons may involve components of pathways involved in the transmission of pain and therefore result in increased pain in those animals. ^
Resumo:
Nerve growth factor (NGF) has been recently identified as an ovulation inductor factor (OIF) in the seminal plasma (SP) (Ratto et al. PNAS 2012; 109:15042-7). The presence of OIF in rabbit has been suggested but this protein has not yet been identified. Our aim was to study the mRNA expression in the rabbit male reproductive tract and to identify the protein β-NGF in the SP.
Resumo:
The guinea pig may represent an animal model for research on ovarian infertility and improvement of the in vitro maturation (IVM) conditions is needed in this species. The aim of the present work was to immunolocalize the Epidermal Growth Factor (EGF)-Receptor in the guinea pig ovaries and to study the effect of EGF on meiotic and cytoplasmic maturation, and apoptotic rate in cumulus-oocyte-co mplexes (COCs). Immunohistochemistry was performed in paraffined ovaries using a rabbit polyclonal antibody EGF-R (1:100; Santa Cruz Biotechnology) and the ABC Vector Elite kit (Vector Laboratories). For the IVM, COCs were collected by aspiration of follicles >700μm under a stereoscopic microscope.
Resumo:
The presence of an ovulation-inducing factor (OIF) in the seminal plasma (SP) of several species with spontaneous and induced ovulation, including the rabbit, has been documented. Recent studies have demonstrated that the OIF in the SP of camels (SPCAM) is a nerve growth factor (β-NGF). The aim of this study was to determine if purified β-NGF from mouse submandibular glands or SPCAM could provoke ovulation induction in the rabbit doe. A total of 35 females were synchronized with 25 IU of equine chorionic gonadotropin (Serigan, Laboratorios Ovejero, Spain) and allocated into 4 groups. Forty-eight hours later (Day 0), does were given a single dose (IM) of 1 mL of saline solution (SS; n = 8); 1 mL of gonadorelin (GnRH; Inducel, Laboratorios Ovejero, Spain; n = 9); 24 µg of β-NGF (2.5S-NGF; Promega, USA; n = 10); or 1 mL of centrifuged raw camel SP (SPCAM; 127 pg mL–1 NGF; n = 8). After treatment, an empty catheter was introduced through the vagina to simulate the nervous/mechanical stimulus of coitus (4 animals per group). Plasma LH concentrations were determined in blood samples taken 30 min before treatment and at 0, 30, 60, 90, and 120 min after injection. Progesterone concentrations were assessed at 0 and 120 min and every 2 days until Day 6 after treatment. Concentrations of β-NGF in camel SP and hormone determinations were made by enzyme immunoassay. Ovulation rate (OR) was determined after euthanasia on Day 7.
Resumo:
Cholinergic neurons respond to the administration of nerve growth factor (NGF) in vivo with a prominent and selective increase of choline acetyl transferase activity. This suggests the possible involvement of endogenous NGF, acting through its receptor TrkA, in the maintenance of central nervous system cholinergic synapses in the adult rat brain. To test this hypothesis, a small peptide, C(92-96), that blocks NGF-TrkA interactions was delivered stereotactically into the rat cortex over a 2-week period, and its effect and potency were compared with those of an anti-NGF monoclonal antibody (mAb NGF30). Two presynaptic antigenic sites were studied by immunoreactivity, and the number of presynaptic sites was counted by using an image analysis system. Synaptophysin was used as a marker for overall cortical synapses, and the vesicular acetylcholine transporter was used as a marker for cortical cholinergic presynaptic sites. No significant variations in the number of synaptophysin-immunoreactive sites were observed. However, both mAb NGF30 and the TrkA antagonist C(92-96) provoked a significant decrease in the number and size of vesicular acetylcholine transporter–IR sites, with the losses being more marked in the C(92-96) treated rats. These observations support the notion that endogenously produced NGF acting through TrkA receptors is involved in the maintenance of the cholinergic phenotype in the normal, adult rat brain and supports the idea that NGF normally plays a role in the continual remodeling of neural circuits during adulthood. The development of neurotrophin mimetics with antagonistic and eventually agonist action may contribute to therapeutic strategies for central nervous system degeneration and trauma.
Resumo:
Although an excitotoxic mechanism of neuronal injury has been proposed to play a role in chronic neurodegenerative disorders such as Alzheimer’s disease, and neurotrophic factors have been put forward as potential therapeutic agents, direct evidence is lacking. Taking advantage of the fact that mutations in the presenilin-1 (PS1) gene are causally linked to many cases of early-onset inherited Alzheimer’s disease, we generated PS1 mutant knock-in mice and directly tested the excitotoxic and neurotrophic hypotheses of Alzheimer’s disease. Primary hippocampal neurons from PS1 mutant knock-in mice exhibited increased production of amyloid β-peptide 42/43 and increased vulnerability to excitotoxicity, which occurred in a gene dosage-dependent manner. Neurons expressing mutant PS1 exhibited enhanced calcium responses to glutamate and increased oxyradical production and mitochondrial dysfunction. Pretreatment with either basic fibroblast growth factor or activity-dependent neurotrophic factor protected neurons expressing mutant PS1 against excitotoxicity. Both basic fibroblast growth factor and activity-dependent neurotrophic factor stabilized intracellular calcium levels and abrogated the increased oxyradical production and mitochondrial dysfunction otherwise caused by the PS1 mutation. Our data indicate that neurotrophic factors can interrupt excitotoxic neurodegenerative cascades promoted by PS1 mutations.
Resumo:
Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.