959 resultados para work function measurements
Resumo:
Development of transparent oxide semiconductors (TOS) from Earth-abundant materials is of great interest for cost-effective thin film device applications, such as solar cells, light emitting diodes (LEDs), touch-sensitive displays, electronic paper, and transparent thin film transistors. The need of inexpensive or high performance electrode might be even greater for organic photovoltaic (OPV), with the goal to harvest renewable energy with inexpensive, lightweight, and cost competitive materials. The natural abundance of zinc and the wide bandgap ($sim$3.3 eV) of its oxide make it an ideal candidate. In this dissertation, I have introduced various concepts on the modulations of various surface, interface and bulk opto-electronic properties of ZnO based semiconductor for charge transport, charge selectivity and optimal device performance. I have categorized transparent semiconductors into two sub groups depending upon their role in a device. Electrodes, usually 200 to 500 nm thick, optimized for good transparency and transporting the charges to the external circuit. Here, the electrical conductivity in parallel direction to thin film, i.e bulk conductivity is important. And contacts, usually 5 to 50 nm thick, are optimized in case of solar cells for providing charge selectivity and asymmetry to manipulate the built in field inside the device for charge separation and collection. Whereas in Organic LEDs (OLEDs), contacts provide optimum energy level alignment at organic oxide interface for improved charge injections. For an optimal solar cell performance, transparent electrodes are designed with maximum transparency in the region of interest to maximize the light to pass through to the absorber layer for photo-generation, plus they are designed for minimum sheet resistance for efficient charge collection and transport. As such there is need for material with high conductivity and transparency. Doping ZnO with some common elements such as B, Al, Ga, In, Ge, Si, and F result in n-type doping with increase in carriers resulting in high conductivity electrode, with better or comparable opto-electronic properties compared to current industry-standard indium tin oxide (ITO). Furthermore, improvement in mobility due to improvement on crystallographic structure also provide alternative path for high conductivity ZnO TCOs. Implementing these two aspects, various studies were done on gallium doped zinc oxide (GZO) transparent electrode, a very promising indium free electrode. The dynamics of the superimposed RF and DC power sputtering was utilized to improve the microstructure during the thin films growth, resulting in GZO electrode with conductivity greater than 4000 S/cm and transparency greater than 90 %. Similarly, various studies on research and development of Indium Zinc Tin Oxide and Indium Zinc Oxide thin films which can be applied to flexible substrates for next generation solar cells application is presented. In these new TCO systems, understanding the role of crystallographic structure ranging from poly-crystalline to amorphous phase and the influence on the charge transport and optical transparency as well as important surface passivation and surface charge transport properties. Implementation of these electrode based on ZnO on opto-electronics devices such as OLED and OPV is complicated due to chemical interaction over time with the organic layer or with ambient. The problem of inefficient charge collection/injection due to poor understanding of interface and/or bulk property of oxide electrode exists at several oxide-organic interfaces. The surface conductivity, the work function, the formation of dipoles and the band-bending at the interfacial sites can positively or negatively impact the device performance. Detailed characterization of the surface composition both before and after various chemicals treatment of various oxide electrode can therefore provide insight into optimization of device performance. Some of the work related to controlling the interfacial chemistry associated with charge transport of transparent electrodes are discussed. Thus, the role of various pre-treatment on poly-crystalline GZO electrode and amorphous indium zinc oxide (IZO) electrode is compared and contrasted. From the study, we have found that removal of defects and self passivating defects caused by accumulation of hydroxides in the surface of both poly-crystalline GZO and amorphous IZO, are critical for improving the surface conductivity and charge transport. Further insight on how these insulating and self-passivating defects cause charge accumulation and recombination in an device is discussed. With recent rapid development of bulk-heterojunction organic photovoltaics active materials, devices employing ZnO and ZnO based electrode provide air stable and cost-competitive alternatives to traditional inorganic photovoltaics. The organic light emitting diodes (OLEDs) have already been commercialized, thus to follow in the footsteps of this technology, OPV devices need further improvement in power conversion efficiency and stable materials resulting in long device lifetimes. Use of low work function metals such as Ca/Al in standard geometry do provide good electrode for electron collection, but serious problems using low work-function metal electrodes originates from the formation of non-conductive metal oxide due to oxidation resulting in rapid device failure. Hence, using low work-function, air stable, conductive metal oxides such as ZnO as electrons collecting electrode and high work-function, air stable metals such as silver for harvesting holes, has been on the rise. Devices with degenerately doped ZnO functioning as transparent conductive electrode, or as charge selective layer in a polymer/fullerene based heterojunction, present useful device structures for investigating the functional mechanisms within OPV devices and a possible pathway towards improved air-stable high efficiency devices. Furthermore, analysis of the physical properties of the ZnO layers with varying thickness, crystallographic structure, surface chemistry and grain size deposited via various techniques such as atomic layer deposition, sputtering and solution-processed ZnO with their respective OPV device performance is discussed. We find similarity and differences in electrode property for good charge injection in OLEDs and good charge collection in OPV devices very insightful in understanding physics behind device failures and successes. In general, self-passivating surface of amorphous TCOs IZO, ZTO and IZTO forms insulating layer that hinders the charge collection. Similarly, we find modulation of the carrier concentration and the mobility in electron transport layer, namely zinc oxide thin films, very important for optimizing device performance.
Resumo:
The interface between Au(hkl) basal planes and the ionic liquid 1-Ethyl-2,3-dimethyl imidazolium bis(trifluoromethyl)sulfonil imide was investigated by using both cyclic voltammetry and laser-induced temperature jump. Cyclic voltammetry showed characteristic features, revealing surface sensitive processes at the interfaces Au(hkl)/[Emmim][Tf2N]. From laser-induced heating the potential of maximum entropy (pme) is determined. Pme is close to the potential of zero charge (pzc) and, therefore, the technique provides relevant interfacial information. The following order for the pme values has been found: Au(111) > Au(100) > Au(110). This order correlates well with work function data and values of pzc in aqueous solutions.
Resumo:
Esta dissertação apresenta os principais aspectos da Teoria dos Jogos, mostrando sua aplicação como instrumento analítico na Gestão de Pessoas no que diz respeito à variável salário. Considera a organização e o trabalhador como conceitos gerais, sem identificar o setor de atuação, ramo de atividade, classificação jurídica em função do seu faturamento, total de empregados ou participação de mercado dessa organização. Da mesma forma o conceito trabalhador não recebe qualquer identificação em relação ao setor de atividade onde trabalha, função, salário ou formação profissional. A organização é toda estrutura que gera bens e serviços para a sociedade e o trabalhador é todo elemento que emprega sua força de trabalho na produção de bens e serviços. Os objetivos estabelecidos para este estudo são: identificar as possibilidades de aplicação da Teoria dos Jogos na Gestão de Pessoas considerando a variável salário como elemento de conflito entre a organização e o trabalhador; mostrar se a forma de representação extensiva é mais apropriada ou não para analisar o cenário de embate na decisão de contratar ou não o trabalhador ou pagar mais ou menos salário e a existência do Equilíbrio de Nash. A metodologia qualitativa com apoio bibliográfico e documental caracteriza esta pesquisa qualitativa quanto a metodologia de pesquisa. Os métodos qualitativos contribuem para interpretar fenômenos do cotidiano, podendo ser composto por dados simbólicos situados em determinado contexto. A pesquisa documental é uma contribuição importante ao estudo do tema proposto, já que a pesquisa qualitativa não é uma proposta rigidamente estruturada e isto permite que o pesquisador use a imaginação e criatividade para atingir o objetivo. Os resultados obtidos pela pesquisa dão conta de que é possível a aplicação da Teoria dos Jogos na Gestão de Pessoas considerando o embate entre os jogadores (o trabalhador e a organização) em torno do salário, discutido no capítulo 4 nas representações da matriz de payoff de um jogo estratégico e nas figuras 9,10,11,e 16. A representação na forma extensiva, outro objetivo, indicando os payoffs entre duas decisões centrais representadas por X = flexibilização com renúncia dos direitos pelos trabalhadores e Y = flexibilização/adaptação/negociação, conforme figura 16. O gestor de pessoas percebe as estratégias existentes para a organização e trabalhador para a tomada de decisão, ao mesmo tempo em que pode avaliar a situação que esteja vivendo e fazer simulações em busca de novas propostas. Por fim, o Equilíbrio de Nash para a aplicação na Gestão de Pessoas é discutido no item 4.1.3, sendo possível verificar que tanto o trabalhador como a organização podem chegar a uma decisão favorável para ambos e manter seus objetivos pretendidos inicialmente. Na figura 17, esse equilíbrio é apresentado depois da tomada de decisão do trabalhador pela proposta feita pela organização na sequência O2 e o trabalhador ficou com o ramo de sequência T2 com o valor de 20 moedas. A potencialidade da Teoria dos Jogos na Gestão de Pessoas está no fato de que quem atua em uma organização compartilha resultados bons ou ruins obtidos pelas escolhas alheias, individuais e construídas coletivamente.
Resumo:
Esta dissertação apresenta os principais aspectos da Teoria dos Jogos, mostrando sua aplicação como instrumento analítico na Gestão de Pessoas no que diz respeito à variável salário. Considera a organização e o trabalhador como conceitos gerais, sem identificar o setor de atuação, ramo de atividade, classificação jurídica em função do seu faturamento, total de empregados ou participação de mercado dessa organização. Da mesma forma o conceito trabalhador não recebe qualquer identificação em relação ao setor de atividade onde trabalha, função, salário ou formação profissional. A organização é toda estrutura que gera bens e serviços para a sociedade e o trabalhador é todo elemento que emprega sua força de trabalho na produção de bens e serviços. Os objetivos estabelecidos para este estudo são: identificar as possibilidades de aplicação da Teoria dos Jogos na Gestão de Pessoas considerando a variável salário como elemento de conflito entre a organização e o trabalhador; mostrar se a forma de representação extensiva é mais apropriada ou não para analisar o cenário de embate na decisão de contratar ou não o trabalhador ou pagar mais ou menos salário e a existência do Equilíbrio de Nash. A metodologia qualitativa com apoio bibliográfico e documental caracteriza esta pesquisa qualitativa quanto a metodologia de pesquisa. Os métodos qualitativos contribuem para interpretar fenômenos do cotidiano, podendo ser composto por dados simbólicos situados em determinado contexto. A pesquisa documental é uma contribuição importante ao estudo do tema proposto, já que a pesquisa qualitativa não é uma proposta rigidamente estruturada e isto permite que o pesquisador use a imaginação e criatividade para atingir o objetivo. Os resultados obtidos pela pesquisa dão conta de que é possível a aplicação da Teoria dos Jogos na Gestão de Pessoas considerando o embate entre os jogadores (o trabalhador e a organização) em torno do salário, conforme pode ser visto no capítulo 4 nas representações da matriz de payoff de um jogo estratégico e nas figuras 9,10,11,e 16. A representação na forma extensiva, constitui outro objetivo, indicando os payoffs entre duas decisões centrais representadas por X = flexibilização com renúncia dos direitos pelos trabalhadores e Y = flexibilização/adaptação/negociação, conforme figura 16. Ao analisar a figura, o gestor de pessoas percebe as estratégias existentes para a organização e trabalhador para a tomada de decisão, ao mesmo tempo em que pode avaliar a situação que esteja vivendo e fazer simulações em busca de novas propostas. Por fim, o Equilíbrio de Nash para a aplicação na Gestão de Pessoas é discutido no item 4.1.3, sendo possível verificar que tanto o trabalhador como a organização podem chegar a uma decisão favorável para ambos e manter seus objetivos pretendidos inicialmente. Na figura 17, esse equilíbrio é apresentado depois da tomada de decisão do trabalhador pela proposta feita pela organização na sequência O2 e o trabalhador ficou com o ramo de sequência T2 com o valor de 20 moedas. A potencialidade da Teoria dos Jogos na Gestão de Pessoas surge do fato de que quem atua em uma organização compartilha resultados bons ou ruins obtidos pelas escolhas alheias, escolhas individuais e pelas escolhas construídas coletivamente. Quando o trabalhador resolve produzir menos, a empresa sofre com a perda do lucro gerado pelo ritmo mais lento de trabalho. Para mudar esse quadro, a empresa toma a decisão de aumentar o salário e o trabalhador por sua vez desenvolve a tarefa com maior velocidade e em maior quantidade e ela pode retomar o seu lucro. Nesses jogos há cobranças de desempenho, exigência para atingir metas, pressões, conflitos com clientes e lideranças. Logo, a Teoria dos Jogos pode ser aplicada como instrumento para o gestor de Pessoas avaliar a situação vivida para a tomada de decisão que resolva a situação de embate.
Resumo:
It is important to maintain a uniform distribution of gas and liquid in large diameter packed columns to maintain mass transfer efficiency on scaling up. This work presents measurements and methods of evaluating maldistributed gas flow in packed columns. Little or no previous work has been done in this field. A gas maldistribution number, F, was defined, based on point to point velocity variations in the gas emerging from the top of packed beds. f has a minimum value for a uniformly distributed flow and much larger values for maldistributed flows. A method of testing the quality of vapour distributors is proposed, based on "the variation of f with packed height. A good gas distributor requires a short packed depth to give a good gas distribution. Measurements of gas maldistribution have shown that the principle of dynamic similarity is satisfied if two geometrically similar beds are operated at the same Reynold's number. The validity of f as a good measure of gas maldistribution, and the principle of dynamic similarity are tested statistically by Multi-Factor Analysis of the variance, and visually by the response "surfaces technique. Pressure distribution has been measured in a model of a large diameter packed bed, and shown to be associated with the velocity of the gas in a tangential feed pipe. Two simplified theoretical models are proposed to describe the flow of gases through packed beds and to support the principle of dynamic similarity. These models explain why the packed bed itself causes the flow of gas to become more uniformly distributed. A 1.2m. diameter scaled-down model was constructed geometrically similar to a 7.3m. diameter vacuum crude distillation column. The previously known internal cylinder gas distributor was tested. Three new distributors suitable for use in a large diameter column were developed and tested, these are: Internal Cylinder with Slots and Cross Baffles, Internal Cylinder with Guides in the Annulus, Internal Cylinder with Internal Cross Baffles - It has been shown that this is an excellent distributor.
Resumo:
A detailed literature survey confirmed cold roll-forming to be a complex and little understood process. In spite of its growing value, the process remains largely un-automated with few principles used in set-up of the rolling mill. This work concentrates on experimental investigations of operating conditions in order to gain a scientific understanding of the process. The operating conditions are; inter-pass distance, roll load, roll speed, horizontal roll alignment. Fifty tests have been carried out under varied operating conditions, measuring section quality and longitudinal straining to give a picture of bending. A channel section was chosen for its simplicity and compatibility with previous work. Quality measurements were measured in terms of vertical bow, twist and cross-sectional geometric accuracy, and a complete method of classifying quality has been devised. The longitudinal strain profile was recorded, by the use of strain gauges attached to the strip surface at five locations. Parameter control is shown to be important in allowing consistency in section quality. At present rolling mills are constructed with large tolerances on operating conditions. By reduction of the variability in parameters, section consistency is maintained and mill down-time is reduced. Roll load, alignment and differential roll speed are all shown to affect quality, and can be used to control quality. Set-up time is reduced by improving the design of the mill so that parameter values can be measured and set, without the need for judgment by eye. Values of parameters can be guided by models of the process, although elements of experience are still unavoidable. Despite increased parameter control, section quality is variable, if only due to variability in strip material properties. Parameters must therefore be changed during rolling. Ideally this can take place by closed-loop feedback control. Future work lies in overcoming the problems connected with this control.
Resumo:
The quest for renewable energy sources has led to growing attention in the research of organic photovoltaics (OPVs), as a promising alternative to fossil fuels, since these devices have low manufacturing costs and attractive end-user qualities, such as ease of installation and maintenance. Wide application of OPVs is majorly limited by the devices lifetime. With the development of new encapsulation materials, some degradation factors, such as water and oxygen ingress, can almost be excluded, whereas the thermal degradation of the devices remains a major issue. Two aspects have to be addressed to solve the problem of thermal instability: bulk effects in the photoactive layer and interfacial effects at the photoactive layer/charge-transporting layers. In this work, the interface between photoactive layer and electron-transporting zinc oxide (ZnO) in devices with inverted architecture was engineered by introducing polymeric interlayers, based on zinc-binding ligands, such as 3,4-dihydroxybenzene and 8-hydroxyquinoline. Also, a cross-linkable layer of poly(3,4-dimethoxystyrene) and its fullerene derivative were studied. At first, controlled reversible addition-fragmentation chain transfer (RAFT) polymerisation was employed to achieve well-defined polymers in a range of molar masses, all bearing a chain-end functionality for further modifications. Resulting polymers have been fully characterised, including their thermal and optical properties, and introduced as interlayers to study their effect on the initial device performance and thermal stability. Poly(3,4-dihydroxystyrene) and its fullerene derivative were found unsuitable for application in devices as they increased the work function of ZnO and created a barrier for electron extraction. On the other hand, their parental polymer, poly(3,4-dimethoxystyrene), and its fullerene derivative, upon cross-linking, resulted in enhanced efficiency and stability of devices, if compared to control. Polymers based on 8-hydroxyquinoline ligand had a negative effect on the initial stability of the devices, but increased the lifetime of the cells under accelerated thermal stress. Comprehensive studies of the key mechanisms, determining efficiency, such as charge generation and extraction, were performed by using time-resolved electrical and spectroscopic techniques, in order to understand in detail the effect of the interlayers on the device performance. Obtained results allow deeper insight into mechanisms of degradation that limit the lifetime of devices and prompt the design of better materials for the interface stabilisation.
Resumo:
OBJECTIVE: The aim of this study was to compare the effectiveness of multimodal supervised physiotherapy programs with the absence of treatment among women with persistent postnatal stress urinary incontinence. METHODS: This was a single-blind randomized controlled trial. Sixty-four women with stress urinary incontinence were randomly assigned to 8 weeks of either multimodal pelvic floor rehabilitation (n = 21), multimodal pelvic floor rehabilitation with abdominal muscle training (n = 23), or control non–pelvic floor rehabilitation (n = 20). The primary outcome measure consisted of a modified 20-minute pad test. The secondary outcome measures included a Visual Analog Scale describing the perceived burden of incontinence, the Urogenital Distress Inventory, the Incontinence Impact Questionnaire, and pelvic floor muscle function measurements. RESULTS: Two patients dropped out, leaving 62 for analysis. At follow-up, more than 70% of the women in the treatment groups (14/20 in the pelvic floor and 17/23 in the pelvic floor plus abdominal group) were continent on pad testing compared with 0% of women in the control group. Scores on the pad test, Visual Analog Scale, Urogenital Distress Inventory, and Incontinence Impact Questionnaire improved significantly in both treatment groups (all P < .002), whereas no changes were observed in the control group. Pelvic floor muscle function, however, did not improve significantly in either active group. CONCLUSION: Multimodal supervised pelvic floor physiotherapy is an effective treatment for persistent postnatal stress urinary incontinence.
Resumo:
OBJECTIVE: The aim of this study was to compare the effectiveness of multimodal supervised physiotherapy programs with the absence of treatment among women with persistent postnatal stress urinary incontinence. METHODS: This was a single-blind randomized controlled trial. Sixty-four women with stress urinary incontinence were randomly assigned to 8 weeks of either multimodal pelvic floor rehabilitation (n = 21), multimodal pelvic floor rehabilitation with abdominal muscle training (n = 23), or control non–pelvic floor rehabilitation (n = 20). The primary outcome measure consisted of a modified 20-minute pad test. The secondary outcome measures included a Visual Analog Scale describing the perceived burden of incontinence, the Urogenital Distress Inventory, the Incontinence Impact Questionnaire, and pelvic floor muscle function measurements. RESULTS: Two patients dropped out, leaving 62 for analysis. At follow-up, more than 70% of the women in the treatment groups (14/20 in the pelvic floor and 17/23 in the pelvic floor plus abdominal group) were continent on pad testing compared with 0% of women in the control group. Scores on the pad test, Visual Analog Scale, Urogenital Distress Inventory, and Incontinence Impact Questionnaire improved significantly in both treatment groups (all P < .002), whereas no changes were observed in the control group. Pelvic floor muscle function, however, did not improve significantly in either active group. CONCLUSION: Multimodal supervised pelvic floor physiotherapy is an effective treatment for persistent postnatal stress urinary incontinence.
Resumo:
Two-dimensional (2D) materials have generated great interest in the last few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2) and insulating Boron Nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency and favorable transport properties for realizing electronic, sensing and optical systems on arbitrary surfaces. In this work, we develop several etch stop layer technologies that allow the fabrication of complex 2D devices and present for the first time the large scale integration of graphene with molybdenum disulfide (MoS2) , both grown using the fully scalable CVD technique. Transistor devices and logic circuits with MoS2 channel and graphene as contacts and interconnects are constructed and show high performances. In addition, the graphene/MoS2 heterojunction contact has been systematically compared with MoS2-metal junctions experimentally and studied using density functional theory. The tunability of the graphene work function significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on 2D heterostructure pave the way for practical flexible transparent electronics in the future. The authors acknowledge financial support from the Office of Naval Research (ONR) Young Investigator Program, the ONR GATE MURI program, and the Army Research Laboratory. This research has made use of the MI.
Resumo:
Relatório de Estágio para obtenção do grau de Mestre em Engenharia Civil
Resumo:
International audience
Resumo:
We synthesized nanoscale TiO2-RuO2 alloys by atomic layer deposition (ALD) that possess a high work function and are highly conductive. As such, they function as good Schottky contacts to extract photogenerated holes from n-type silicon while simultaneously interfacing with water oxidation catalysts. The ratio of TiO2 to RuO2 can be precisely controlled by the number of ALD cycles for each precursor. Increasing the composition above 16% Ru sets the electronic conductivity and the metal work function. No significant Ohmic loss for hole transport is measured as film thickness increases from 3 to 45 nm for alloy compositions >= 16% Ru. Silicon photoanodes with a 2 nm SiO2 layer that are coated by these alloy Schottky contacts having compositions in the range of 13-46% Ru exhibit average photovoltages of 525 mV, with a maximum photovoltage of 570 mV achieved. Depositing TiO2-RuO2 alloys on nSi sets a high effective work function for the Schottky junction with the semiconductor substrate, thus generating a large photovoltage that is isolated from the properties of an overlying oxygen evolution catalyst or protection layer.
Resumo:
BACKGROUND: Epidemiological studies show that high circulating cystatin C is associated with risk of cardiovascular disease (CVD), independent of creatinine-based renal function measurements. It is unclear whether this relationship is causal, arises from residual confounding, and/or is a consequence of reverse causation. OBJECTIVES: The aim of this study was to use Mendelian randomization to investigate whether cystatin C is causally related to CVD in the general population. METHODS We incorporated participant data from 16 prospective cohorts (n ¼ 76,481) with 37,126 measures of cystatin C and added genetic data from 43 studies (n ¼ 252,216) with 63,292 CVD events. We used the common variant rs911119 in CST3 as an instrumental variable to investigate the causal role of cystatin C in CVD, including coronary heart disease, ischemic stroke, and heart failure. RESULTS: Cystatin C concentrations were associated with CVD risk after adjusting for age, sex, and traditional risk factors (relative risk: 1.82 per doubling of cystatin C; 95% confidence interval [CI]: 1.56 to 2.13; p ¼ 2.12 1014). The minor allele of rs911119 was associated with decreased serum cystatin C (6.13% per allele; 95% CI: 5.75 to 6.50; p ¼ 5.95 10211), explaining 2.8% of the observed variation in cystatin C. Mendelian randomization analysis did not provide evidence for a causal role of cystatin C, with a causal relative risk for CVD of 1.00 per doubling cystatin C (95% CI: 0.82 to 1.22; p ¼ 0.994), which was statistically different from the observational estimate (p ¼ 1.6 105 ). A causal effect of cystatin C was not detected for any individual component of CVD. CONCLUSIONS: Mendelian randomization analyses did not support a causal role of cystatin C in the etiology of CVD. As such, therapeutics targeted at lowering circulating cystatin C are unlikely to be effective in preventing CVD.
Resumo:
The High Energy Rapid Modular Ensemble of Satellites (HERMES) is a new mission concept involving the development of a constellation of six CubeSats in low Earth orbit with new miniaturized instruments that host a hybrid Silicon Drift Detector/GAGG:Ce based system for X-ray and γ-ray detection, aiming to monitor high-energy cosmic transients, such as Gamma Ray Bursts and the electromagnetic counterparts of gravitational wave events. The HERMES constellation will also operate together with the Australian-Italian SpIRIT mission, which will house a HERMES-like detector. The HERMES pathfinder mini-constellation, consisting of six satellites plus SpIRIT, is likely to be launched in 2023. The HERMES detectors are based on the heritage of the Italian ReDSoX collaboration, with joint design and production by INFN-Trieste and Fondazione Bruno Kessler, and the involvement of several Italian research institutes and universities. An application-specific, low-noise, low-power integrated circuit (ASIC) called LYRA was conceived and designed for the HERMES readout electronics. My thesis project focuses on the ground calibrations of the first HERMES and SpIRIT flight detectors, with a performance assessment and characterization of the detectors. The first part of this work addresses measurements and experimental tests on laboratory prototypes of the HERMES detectors and their front-end electronics, while the second part is based on the design of the experimental setup for flight detector calibrations and related functional tests for data acquisition, as well as the development of the calibration software. In more detail, the calibration parameters (such as the gain of each detector channel) are determined using measurements with radioactive sources, performed at different operating temperatures between -20°C and +20°C by placing the detector in a suitable climate chamber. The final part of the thesis involves the analysis of the calibration data and a discussion of the results.