897 resultados para wireless communications
Resumo:
Using seven strategically placed, time-synchronized bodyworn receivers covering the head, upper front and back torso, and the limbs, we have investigated the effect of user state: stationary or mobile and local environment: anechoic chamber, open office area and hallway upon first and second order statistics for on-body fading channels. Three candidate models were considered: Nakagami, Rice and lognormal. Using maximum likelihood estimation and the Akaike information criterion it was established that the Nakagami-m distribution best described small-scale fading for the majority of on-body channels over all the measurement scenarios. When the user was stationary, Nakagami-m parameters were found to be much greater than 1, irrespective of local surroundings. For mobile channels, Nakagami-m parameters significantly decreased, with channels in the open office area and hallway experiencing the worst fading conditions.
Resumo:
The ability to switch between propagating modes is important for body-centric applications such as medical body area networks where a single node may need to be able to optimise communications for either on-body sensor links or off-body links to the wider network. Therefore, we present a compact 2.45 GHz active mode-switching wearable antenna for both on-body and off-body wireless communications. The single-layer patch antenna was pattern-switched using shorting pins and had an impedance bandwidth of 253 MHz and 217 MHz for the on-body and off-body radiating modes, respectively. An efficiency of 57 % and 56.8 % was obtained for on-body and off-body mode respectively when placed in close proximity to a phantom that represents a muscle issue at 2.45 GHz.
Resumo:
In this paper, the performance of the network coded amplify-forward cooperative protocol is studied. The use of network coding can suppress the bandwidth resource consumed by relay transmission, and hence increase the spectral efficiency of cooperative diversity. A distributed strategy of relay selection is applied to the cooperative scheme, which can reduce system overhead and also facilitate the development of the explicit expressions of information metrics, such as outage probability and ergodic capacity. Both analytical and numerical results demonstrate that the proposed protocol can achieve large ergodic capacity and full diversity gain simultaneously.
Resumo:
This paper proposes a hybrid transmission technique based on adaptive code-to-user allocation and linear precoding for the downlink of phase shift keying (PSK) based multi-carrier code division multiple access (MC-CDMA) systems. The proposed scheme is based on the separation of the instantaneous multiple access interference (MAI) into constructive and destructive components taking into account the dependency on both the channel variation and the instantaneous symbol values of the active users. The first stage of the proposed technique is to adaptively distribute the available spreading sequences to the users on a symbol-by-symbol basis in the form of codehopping with the objective to steer the users' instantaneous crosscorrelations to yield a favourable constructive to destructive MAI ratio. The second stage is to employ a partial transmitter based zero forcing (ZF) scheme specifically designed for the exploitation of constructive MAI. The partial ZF processing decorrelates destructive interferers, while users that interfere constructively remain correlated. This results in a signal to interference-plus-noise ratio (SINR) enhancement without the need for additional power-per-user investment. It will be shown in the results section that significant bit error rate (BER) performance benefits can be achieved with this technique.
Resumo:
DeAuthentication Denial of Service attacks in Public Access WiFi operate by exploiting the lack of authentication of management frames in the 802.11 protocol. Detection of these attacks rely almost exclusively on the selection of appropriate thresholds. In this work the authors demonstrate that there are additional, previously unconsidered, metrics which also influence DoS detection performance. A method of systematically tuning these metrics to optimal values is proposed which ensures that parameter choices are repeatable and verifiable.
Resumo:
In this paper, we propose a multiuser cognitive relay network, where multiple secondary sources communicate with a secondary destination through the assistance of a secondary relay in the presence of secondary direct links and multiple primary receivers. We consider the two relaying protocols of amplify-and-forward (AF) and decode-and-forward (DF), and take into account the availability of direct links from the secondary sources to the secondary destination. With this in mind, we propose an optimal solution for cognitive multiuser scheduling by selecting the optimal secondary source, which maximizes the received signal-to-noise ratio (SNR) at the secondary destination using maximal ratio combining. This is done by taking into account both the direct link and the relay link in the multiuser selection criterion. For both AF and DF relaying protocols, we first derive closed-form expressions for the outage probability and then provide the asymptotic outage probability, which determines the diversity behavior of the multiuser cognitive relay network. Finally, this paper is corroborated by representative numerical examples.
Resumo:
The human body is an extremely challenging environment for the operation of wireless communications systems, not least because of the complex antenna-body electromagnetic interaction effects which can occur. This is further compounded by the impact of movement and the propagation characteristics of the local environment which all have an effect upon body centric communications channels. As the successful design of body area networks (BANs) and other types of body centric system is inextricably linked to a thorough understanding of these factors, the aim of this paper is to conduct a survey of the current state of the art in relation to propagation and channel models primarily for BANs but also considering other types of body centric communications. We initially discuss some of the standardization efforts performed by the Institute of Electrical and Electronics Engineers 802.15.6 task group before focusing on the two most popular types of technologies currently being considered for BANs, namely narrowband and Ultrawideband (UWB) communications. For narrowband communications the applicability of a generic path loss model is contended, before presenting some of the scenario specific models which have proven successful. The impacts of human body shadowing and small-scale fading are also presented alongside some of the most recent research into the Doppler and time dependencies of BANs. For UWB BAN communications, we again consider the path loss as well as empirical tap delay line models developed from a number of extensive channel measurement campaigns conducted by research institutions around the world. Ongoing efforts within collaborative projects such as Committee on Science and Technology Action IC1004 are also described. Finally, recent years have also seen significant developments in other areas of body centric communications such as off-body and body-to-body communications. We highlight some of the newest relevant research in these areas as well as discussing some of the advanced topics which are currently being addressed in the field of body centric communications. Key Points Channel models for body centric comms ©2014. The Authors.
Resumo:
By 2015, with the proliferation of wireless multimedia applications and services (e.g., mobile TV, video on demand, online video repositories, immersive video interaction, peer to peer video streaming, and interactive video gaming), and any-time anywhere communication, the number of smartphones and tablets will exceed 6.5 billion as the most common web access devices. Data volumes in wireless multimedia data-intensive applications and mobile web services are projected to increase by a factor of 10 every five years, associated with a 20 percent increase in energy consumption, 80 percent of which is multimedia traffic related. In turn, multimedia energy consumption is rising at 16 percent per year, doubling every six years. It is estimated that energy costs alone account for as much as half of the annual operating expenditure. This has prompted concerted efforts by major operators to drastically reduce carbon emissions by up to 50 percent over the next 10 years. Clearly, there is an urgent need for new disruptive paradigms of green media to bridge the gap between wireless technologies and multimedia applications.