988 resultados para winter cereal cover crops
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The expansion of the no-tillage system, in Brazil, has increasingly diversified the ways in which the production methods are established and managed. This study aimed at evaluating the influence of preceding crops such as mayze and Urochloa ruziziensis, as well as their intercropping, in the presence and absence of seed inoculation with Azospirillum brasilense, and the cover nitrogen supplying on common bean development, production components and grain yield. The study was carried out in Selvíria, Mato Grosso do Sul State, Brazil, in the 2011/2012 crop season. The experimental design was randomized blocks, with four replications, in a 8x4 factorial scheme, with treatments consisting of a combination of cover crops (associations of mayze, U. ruziziensis and A. brasilense) and cover nitrogen doses on common bean (0 kg ha-1, 30 kg ha-1, 60 kg ha-1 and 90 kg ha-1). The preceding crops affected the common bean grain yield, with the mayze and Urochloa intercropping, both inoculated, being the best option. The initial common bean population was not affected by previous crops. The cover nitrogen application did not affect the common bean grain yield under winter irrigation, for the no-tillage system.
Resumo:
The use of cover crops has been suggested as an effective method to maintain and/or increase the organic matter content, while maintaining and/or enhancing the soil physical, chemical and biological properties. The fertility of Cerrado soils is low and, consequently, phosphorus levels as well. Phosphorus is required at every metabolic stage of the plant, as it plays a role in the processes of protein and energy synthesis and influences the photosynthetic process. This study evaluated the influence of cover crops and phosphorus rates on soil chemical and biological properties after two consecutive years of common bean. The study analyzed an Oxisol in Selvíria (Mato Grosso do Sul, Brazil), in a randomized block, split plot design, in a total of 24 treatments with three replications. The plot treatments consisted of cover crops (millet, pigeon pea, crotalaria, velvet bean, millet + pigeon pea, millet + crotalaria, and millet + velvet bean) and one plot was left fallow. The subplots were represented by phosphorus rates applied as monoammonium phosphate (0, 60 and 90 kg ha-1 P2O5). In August 2011, the soil chemical properties were evaluated (pH, organic matter, phosphorus, potential acidity, cation exchange capacity, and base saturation) as well as biological variables (carbon of released CO2, microbial carbon, metabolic quotient and microbial quotient). After two years of cover crops in rotation with common bean, the cover crop biomass had not altered the soil chemical properties and barely influenced the microbial activity. The biomass production of millet and crotalaria (monoculture or intercropped) was highest. The biological variables were sensitive and responded to increasing phosphorus rates with increases in microbial carbon and reduction of the metabolic quotient.
Resumo:
The application of conservation practices in production systems is essential to the sustainability of the agricultural production capacity. The use of different cover crops can reduce the need of topdressing nitrogen fertilizers in wheat crops. This study aimed at evaluating the influence of cover crops residues (millet, sunn hemp, pigeon pea, millet + sunn hemp, millet + pigeon pea and fallow ground), grown previously to the summer crop (rice), and topdressing nitrogen doses (0 kg ha-1, 25 kg ha-1, 50 kg ha-1, 75 kg ha-1, 100 kg ha-1 and 125 kg ha-1), in the development and yield of wheat under no-tillage system. The experiment was carried out in Selvíria, Mato Grosso do Sul State, Brazil, in a Red Oxisol, in 2009/2010 and 2010/2011. The experimental design was randomized blocks, in a 6x6 factorial scheme. The cover crops developed during August/October (2009/2010) and September/November (2010/2011), previously to the summer crop, with the chemical desiccation performed respectively at 73 and 55 days after sowing. The wheat (winter) was sown in May, in both periods, and harvested at 113 (2009/2010) and 106 (2010/2011) days after emergence. The cover crops residues of pigeon pea, sunn hemp and millet + sunn hemp, preceding wheat, provided higher wheat yields, relatively to the fallow ground. The wheat yield showed a quadratic response to the increase in the nitrogen availability, reaching higher yields with the nitrogen doses estimated in 113 kg ha-1 (2010) and 98 kg ha-1 (2011).
Resumo:
Management systems involving crop rotation, ground cover species and reduced soil tillage can improve the soil physical and biological properties and reduce degradation. The primary purpose of this study was to assess the effect of various crops grown during the sugarcane fallow period on the production of glomalin and arbuscular mycorrhizal fungi in two Latosols, as well as their influence on soil aggregation. The experiment was conducted on an eutroferric Red Latosol with high-clay texture (680 g clay kg-1) and an acric Red Latosol with clayey texture (440 g kg-1 clay) in Jaboticabal (São Paulo State, Brazil). A randomized block design involving five blocks and four crops [soybean (S), soybean/fallow/soybean (SFS), soybean/millet/soybean (SMS) and soybean/sunn hemp/soybean (SHS)] was used to this end. Soil samples for analysis were collected in June 2011. No significant differences in total glomalin production were detected between the soils after the different crops. However, total external mycelium length was greater in the soils under SMS and SHS. Also, there were differences in easily extractable glomalin, total glomalin and aggregate stability, which were all greater in the eutroferric Red Latosol than in the acric Red Latosol. None of the cover crops planted in the fallow period of sugarcane improved aggregate stability in either Latosol.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of cover crops can produce large amounts of biomass, improving the cycling of nutrients, particularly nitrogen, promoting productivity gains and cost savings. Given this, the objective was to evaluate the use of N rates associated to cover crops grown in pre-harvest nutritional status, nitrogen accumulation and corn yield in both years. The experiment was conducted in an Oxisol with maize, no-tillage system. The experimental design was a randomized block, split plot with four replications. The main treatments were: six cropping systems (sun hemp, jack bean, lablab, millet, and velvet bean fallow) in secondary treatments: four doses of nitrogen (0, 60, 120 and 180 kg ha(-1) N). Corn yield was not affected by the type of coverage for pre-season, regardless of the nitrogen applied in the soil. Still, the use of nitrogen fertilizer in the soil promotes gains in grain yield in the first year of cultivation, regardless of the type of coverage in pre-season. In the first year (2006/2007) the species of coverage produced more biomass were velvet bean, jack bean, sun hemp and lablab, while in the second year (2007/08) were the sun hemp, millet, lablab, jack bean and velvet bean, respectively.
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA