941 resultados para wildlife damage management


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Caption title.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Includes bibliographical footnotes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"October 1985"--P. [2] of cover.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

At head of title, BS 3-140: United States Department of Agriculture, Bureau of Biological Survey.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

On cover: Teaching wildlife conservation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"26.31.400.01/80"--P. [4] of cover.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Contribution from Forest service.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In wildlife management, the program of monitoring will depend on the management objective. If the objective is damage mitigation, then ideally it is damage that should be monitored. Alternatively, population size (N) can be used as a surrogate for damage, but the relationship between N and damage obviously needs to be known. If the management objective is a sustainable harvest, then the system of monitoring will depend on the harvesting strategy. In general, the harvest strategy in all states has been to offer a quota that is a constant proportion of population size. This strategy has a number of advantages over alternative strategies, including a low risk of over- or underharvest in a stochastic environment, simplicity, robustness to bias in population estimates and allowing harvest policy to be proactive rather than reactive. However, the strategy requires an estimate of absolute population size that needs to be made regularly for a fluctuating population. Trends in population size and in various harvest statistics, while of interest, are secondary. This explains the large research effort in further developing accurate estimation methods for kangaroo populations. Direct monitoring on a large scale is costly. Aerial surveys are conducted annually at best, and precision of population estimates declines with the area over which estimates are made. Management at a fine scale (temporal or spatial) therefore requires other monitoring tools. Indirect monitoring through harvest statistics and habitat models, that include rainfall or a greenness index from satellite imagery, may prove useful.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coarse-resolution thematic maps derived from remotely sensed data and implemented in GIS play an important role in coastal and marine conservation, research and management. Here, we describe an approach for fine-resolution mapping of land-cover types using aerial photography and ancillary GIs and ground data in a large (100 x 35 km) subtropical estuarine system (Moreton Bay, Queensland, Australia). We have developed and implemented a classification scheme representing 24 coastal (subtidal, intertidal. mangrove, supratidal and terrestrial) cover types relevant to the ecology of estuarine animals, nekton and shorebirds. The accuracy of classifications of the intertidal and subtidal cover types, as indicated by the agreement between the mapped (predicted) and reference (ground) data, was 77-88%, depending on the zone and level of generalization required. The variability and spatial distribution of habitat mosaics (landscape types) across the mapped environment were assessed using K-means clustering and validated with Classification and Regression Tree models. Seven broad landscape types could be distinguished and ways of incorporating the information on landscape composition into site-specific conservation and field research are discussed. This research illustrates the importance and potential applications of fine-resolution mapping for conservation and management of estuarine habitats and their terrestrial and aquatic wildlife. (c) 2005 Elsevier Ltd. All rights reserved.