929 resultados para wet attritor milling
Resumo:
Marked ball grinding tests were carried out in the laboratory using high carbon low alloy steel (cast and forged) and high chrome cast iron balls. Relative ball wear as a function of grinding period and milling conditions was evaluated for the different type of ball materials in the grinding of lead-zinc sulphide and phosphate ores. Results indicated that ball wear increased with time and showed a sharp increase for wet grinding over dry grinding. Ball wear under wet grinding conditions was also influenced by the gaseous atmosphere in the mill. The influence of oxygen on the corrosive wear of grinding balls was increasingly felt in case of sulphide ore grinding. The grinding ball materials could be arranged in the following order with respect to their overall wear resistance:
Resumo:
The combined milling at cryogenic temperature as well as room temperature (RT) has been carried out to prepare ultrafine NaCl crystallites. The milling has been done in evacuated tungsten carbide vials backfilled with high-purity Ar. The results indicate the effect duration of cryomilling prior to RT milling has a strong effect on the final crystallite size. The deformation aided sintering of NaCl crystallites during RT milling and leads to the formation of bimodal distribution of crystallites. The cuboidal-shaped NaCl crystallite undergoes a roughening transition due to plastic deformation. The experimental results are explained using the temperature-dependent mechanical properties of NaCl single crystals and plastic-deformation-induced roughening.
Resumo:
Coarse (BOn/2)-O-n+/xH(2)O (10
Resumo:
Coarse BO2·xH2O (2 < x < 80) gels, free of anion contaminants react with A(OH)2 under refluxing conditions at 70�100°C giving rise to crystallites of single phased, nanometer size powders of ABO3 perovskites (A = Ba, Sr, Ca, Mg, Pb; B = Zr, Ti, Sn). Solid solutions of perovskites could be prepared from compositionally modified gels or mixtures of A(OH)2. Donor doped perovskites could also be prepared from the same method so that the products after processing are often semiconducting. Faster interfacial diffusion of A2+ ions into the gel generates the crystalline regions whose composition is controllable by the A/B ratio as well as the A(OH)2 concentration.
Resumo:
The effect of various milling parameters such as, milling intensity, ball:powder weight ratio and number of balls on the glass forming ability of an elemental blend of composition Ti50Ni50 has been studied by mechanical alloying. In order to understand the results, all the milling parameters have been converted into two energy parameters, namely, impact energy of the ball and the total energy of milling. In a milling map of these two parameters, the conditions for amorphous phase formation have been isolated. A similar exercise has been carried out for Ti50Cu50 as a function of milling time at two milling intensities. The results indicate that a minimum impact energy of the ball and a minimum total energy are essential for amorphization by mechanical alloying.
Resumo:
An account is given of the research that has been carried out on mechanical alloying/milling (MA/MM) during the past 25 years. Mechanical alloying, a high energy ball milling process, has established itself as a viable solid state processing route for the synthesis of a variety of equilibrium and non-equilibrium phases and phase mixtures. The process was initially invented for the production of oxide dispersion strengthened (ODS) Ni-base superalloys and later extended to other ODS alloys. The success of MA in producing ODS alloys with better high temperature capabilities in comparison with other processing routes is highlighted. Mechanical alloying has also been successfully used for extending terminal solid solubilities in many commercially important metallic systems. Many high melting intermetallics that are difficult to prepare by conventional processing techniques could be easily synthesised with homogeneous structure and composition by MA. It has also, over the years, proved itself to be superior to rapid solidification processing as a non-equilibrium processing tool. The considerable literature on the synthesis of amorphous, quasicrystalline, and nanocrystalline materials by MA is critically reviewed. The possibility of achieving solid solubility in liquid immiscible systems has made MA a unique process. Reactive milling has opened new avenues for the solid state metallothermic reduction and for the synthesis of nanocrystalline intermetallics and intermetallic matrix composites. Despite numerous efforts, understanding of the process of MA, being far from equilibrium, is far from complete, leaving large scope for further research in this exciting field.
Resumo:
The use of an instrumented impact test set-up to evaluate the influence of water ingress on the impact response of a carbon–epoxy (C–E) laminated composite system containing discontinuous buffer strips (BS) has been examined. The data on the BS-free C–E sample in dry conditions are used as reference to compare with the data derived from those immersed in water. The work demonstrated the utility of an instrumented impact test set-up in characterising the response, first owing to the architectural difference due to introduction of buffer strips and then due to the presence of an additional phase in the form of water ingressed into the sample. The presence of water was found to enhance the energy absorption characteristics of the C–E system with BS insertions. It was also noticed that with an increasing number of BS layer insertions, the load–time plots displayed characteristic changes. The ductility indices (DI) were found to display a lower value for the water immersed samples compared to the dry ones.
Resumo:
A wet chemical route is developed for the preparation of Sr2CeO4 denoted the carbonate-gel composite technique. This involves the coprecipitation of strontium as fine particles of carbonates within hydrated gels of ceria (CeO2.xH(2)O, 40
Resumo:
Structural transformation and ionic transport properties are investigated on wet-chemically synthesized La1-xMnO3 (X=0.0-0.18) compositions. Powders annealed in oxygen/air at 1000-1080 K exhibit cubic symmetry and transform to rhombohedral on annealing at 1173-1573 K in air/oxygen. Annealing above 1773 K in air or in argon/helium at 1473 K stabilized distorted rhombohedral or orthorhombic symmetry. Structural transformations are confirmed from XRD and TEM studies. The total conductivity of sintered disks, measured by four-probe technique, ranges from 5 S cm(-1) at 298 K to 105 S cm(-1) at 1273 K. The ionic conductivity measured by blocking electrode technique ranges from 1.0X10(-6) S cm(-1) at 700 K to 2.0X10(-3) S cm(-1) at 1273 K. The ionic transference number of these compositions ranges from 3.0X10(-5) to 5.0X10(-5) at 1273 K. The activation energy deduced from experimental data for ionic conduction and ionic migration is 1.03-1.10 and 0.80-1.00 eV, respectively. The activation energy of formation, association and migration of vacancies ranges from 1.07 to 1.44 eV. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The present investigation reports the preparation and microstructural characterization of ultrafine CsCl crystallites using combined cryogenic and room temperature (RT) mechanical milling. The milling has been performed in evacuated WC vials under high purity argon atmosphere. The low temperature milling has been utilized as an effective means of rapid fracturing of the CsCl crystallites. This was followed by RT milling for different time durations. The final crystallite size obtained is 10 +/- 6 nm for sample cryo-milled for 11 h and subsequently RT milled for 35 h. The experimental findings indicate the strong effect of duration of cryo-milling on the final size of the crystallites. The prolonged room temperature milling leads to increase of the crystallite size due to deformation-induced sintering. The results have been discussed in the light of currently available literature. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
We demonstrate a simple strategy of obtaining clean, ultrathin single crystal Au nanowires on substrates and interconnecting pre-defined contacts with an insight into the growth mechanism. The pristine nature enables electron transport measurement through such ultrathin wires and opens up possibilities of exploring its properties for a wide range of applications.
Resumo:
pplication of pulsed plasma for gas cleaning is gaining prominence in recent years mainly from the energy consideration point of view. Normally, gas treatment is carried out, at or above room temperature, by a conventional dry type corona reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the exhaust/flue gas mixture. The authors report some interesting results of the treatment of such stable gases with pulsed plasma at very low ambient temperature. Also reported in the paper is an improvement in DeNO/DeNOx efficiency using unconventional wet-type reactors, designed and fabricated by the authors, operating at different ambient temperatures. Apart from laboratory tests on simulated gas mixtures, field tests were also carried out on the exhaust gas of a 8 kW diesel engine. Further, an attempt was made to test the feasibility of a helical wire as a corona electrode in place of the conventional straight wire electrode. A comparative analysis of the various tests is presented together with a note on the energy consideration
Resumo:
Application of pulsed plasma for gas cleaning is gaining prominence in recent years mainly from the energy consideration point of view. Normally, gas treatment is carried out, at or above room temperature, by a conventional dry type corona reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the exhaust/flue gas mixture. The authors report some interesting results of the treatment of such stable gases with pulsed plasma at very low ambient temperature. Also reported in the paper is an improvement in DeNO/DeNOx efficiency using unconventional wet-type reactors, designed and fabricated by the authors, operating at different ambient temperatures. Apart from laboratory tests on simulated gas mixtures, field tests were also carried out on the exhaust gas of a 8 kW diesel engine. Further, an attempt was made to test the feasibility of a helical wire as a corona electrode in place of the conventional straight wire electrode. A comparative analysis of the various tests is presented together with a note on the energy consideration
Resumo:
This paper reports for the first time synthesis of free standing nano-crystalline copper crystals of a similar to 30-40 nm by ball milling of copper powder at 150 K under Argon atmosphere in a specially designed cryomill. The detailed characterization of these particles using multiple techniques that includes transmission electron microscopy confirms our conclusion. Careful analysis of the chemistry of these particles indicates that these particles are essentially contamination free. Through the analysis of existing models of grain size refinements during ball milling and low temperature deformation, we argue that the suppression of thermal processes and low temperature leads to formation of free nanoparticles as the process of fracture dominates over possible cold welding at low temperatures. (C) 2012 Elsevier B.V. All rights reserved.