972 resultados para wavelet neural nets
Resumo:
The usefulness of motor subtypes of delirium is unclear due to inconsistency in subtyping methods and a lack of validation with objective measures of activity. The activity of 40 patients was measured over 24 h with a discrete accelerometer-based activity monitor. The continuous wavelet transform (CWT) with various mother wavelets were applied to accelerometry data from three randomly selected patients with DSM-IV delirium that were readily divided into hyperactive, hypoactive, and mixed motor subtypes. A classification tree used the periods of overall movement as measured by the discrete accelerometer-based monitor as determining factors for which to classify these delirious patients. This data used to create the classification tree were based upon the minimum, maximum, standard deviation, and number of coefficient values, generated over a range of scales by the CWT. The classification tree was subsequently used to define the remaining motoric subtypes. The use of a classification system shows how delirium subtypes can be categorized in relation to overall motoric behavior. The classification system was also implemented to successfully define other patient motoric subtypes. Motor subtypes of delirium defined by observed ward behavior differ in electronically measured activity levels.
Resumo:
A nonlinear regression structure comprising a wavelet network and a linear term is proposed for system identification. The theoretical foundation of the approach is laid by proving that radial wavelets are orthogonal to linear functions. A constructive procedure for building such models is described and the approach is tested with experimental data.
Resumo:
This paper discusses ECG signal classification after parametrizing the ECG waveforms in the wavelet domain. Signal decomposition using perfect reconstruction quadrature mirror filter banks can provide a very parsimonious representation of ECG signals. In the current work, the filter parameters are adjusted by a numerical optimization algorithm in order to minimize a cost function associated to the filter cut-off sharpness. The goal consists of achieving a better compromise between frequency selectivity and time resolution at each decomposition level than standard orthogonal filter banks such as those of the Daubechies and Coiflet families. Our aim is to optimally decompose the signals in the wavelet domain so that they can be subsequently used as inputs for training to a neural network classifier.
Resumo:
This paper presents a study on wavelets and their characteristics for the specific purpose of serving as a feature extraction tool for speaker verification (SV), considering a Radial Basis Function (RBF) classifier, which is a particular type of Artificial Neural Network (ANN). Examining characteristics such as support-size, frequency and phase responses, amongst others, we show how Discrete Wavelet Transforms (DWTs), particularly the ones which derive from Finite Impulse Response (FIR) filters, can be used to extract important features from a speech signal which are useful for SV. Lastly, an SV algorithm based on the concepts presented is described.
Resumo:
This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T(5) (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency.
Resumo:
A análise do sono está baseada na polissonogra a e o sinal de EEG é o mais importante. A necessidade de desenvolver uma análise automática do sono tem dois objetivos básicos: reduzir o tempo gasto na análise visual e explorar novas medidas quantitativas e suas relações com certos tipos de distúrbios do sono. A estrutura do sinal de EEG de sono está relacionada com a chamada microestrutura do sono, que é composta por grafoelementos. Um destes grafoelementos é o fuso de sono (spindles). Foi utilizado um delineamento transversal aplicado a um grupo de indivíduos normais do sexo masculino para testar o desempenho de um conjunto de ferramentas para a detecção automática de fusos. Exploramos a detecção destes fusos de sono através de procura direta, Matching Pursuit e uma rede neural que utiliza como "input"a transformada de Gabor (GT). Em comparação com a análise visual, o método utilizando a transformada de Gabor e redes neurais apresentou uma sensibilidade de 77% e especi cidade de 73%. Já o Matching Pursuit, apesar de mais demorado, se mostrou mais e ciente, apresentando sensibilidade de 81,2% e especi cidade de 85.2%.
Resumo:
The automatic speech recognition by machine has been the target of researchers in the past five decades. In this period have been numerous advances, such as in the field of recognition of isolated words (commands), which has very high rates of recognition, currently. However, we are still far from developing a system that could have a performance similar to the human being (automatic continuous speech recognition). One of the great challenges of searches for continuous speech recognition is the large amount of pattern. The modern languages such as English, French, Spanish and Portuguese have approximately 500,000 words or patterns to be identified. The purpose of this study is to use smaller units than the word such as phonemes, syllables and difones units as the basis for the speech recognition, aiming to recognize any words without necessarily using them. The main goal is to reduce the restriction imposed by the excessive amount of patterns. In order to validate this proposal, the system was tested in the isolated word recognition in dependent-case. The phonemes characteristics of the Brazil s Portuguese language were used to developed the hierarchy decision system. These decisions are made through the use of neural networks SVM (Support Vector Machines). The main speech features used were obtained from the Wavelet Packet Transform. The descriptors MFCC (Mel-Frequency Cepstral Coefficient) are also used in this work. It was concluded that the method proposed in this work, showed good results in the steps of recognition of vowels, consonants (syllables) and words when compared with other existing methods in literature
Resumo:
This work consists in the use of techniques of signals processing and artificial neural networks to identify leaks in pipes with multiphase flow. In the traditional methods of leak detection exists a great difficulty to mount a profile, that is adjusted to the found in real conditions of the oil transport. These difficult conditions go since the unevenly soil that cause columns or vacuum throughout pipelines until the presence of multiphases like water, gas and oil; plus other components as sand, which use to produce discontinuous flow off and diverse variations. To attenuate these difficulties, the transform wavelet was used to map the signal pressure in different resolution plan allowing the extraction of descriptors that identify leaks patterns and with then to provide training for the neural network to learning of how to classify this pattern and report whenever this characterize leaks. During the tests were used transient and regime signals and pipelines with punctures with size variations from ½' to 1' of diameter to simulate leaks and between Upanema and Estreito B, of the UN-RNCE of the Petrobras, where it was possible to detect leaks. The results show that the proposed descriptors considered, based in statistical methods applied in domain transform, are sufficient to identify leaks patterns and make it possible to train the neural classifier to indicate the occurrence of pipeline leaks
Resumo:
The study of function approximation is motivated by the human limitation and inability to register and manipulate with exact precision the behavior variations of the physical nature of a phenomenon. These variations are referred to as signals or signal functions. Many real world problem can be formulated as function approximation problems and from the viewpoint of artificial neural networks these can be seen as the problem of searching for a mapping that establishes a relationship from an input space to an output space through a process of network learning. Several paradigms of artificial neural networks (ANN) exist. Here we will be investigated a comparative of the ANN study of RBF with radial Polynomial Power of Sigmoids (PPS) in function approximation problems. Radial PPS are functions generated by linear combination of powers of sigmoids functions. The main objective of this paper is to show the advantages of the use of the radial PPS functions in relationship traditional RBF, through adaptive training and ridge regression techniques.
Resumo:
Continuous-time neural networks for solving convex nonlinear unconstrained;programming problems without using gradient information of the objective function are proposed and analyzed. Thus, the proposed networks are nonderivative optimizers. First, networks for optimizing objective functions of one variable are discussed. Then, an existing one-dimensional optimizer is analyzed, and a new line search optimizer is proposed. It is shown that the proposed optimizer network is robust in the sense that it has disturbance rejection property. The network can be implemented easily in hardware using standard circuit elements. The one-dimensional net is used as a building block in multidimensional networks for optimizing objective functions of several variables. The multidimensional nets implement a continuous version of the coordinate descent method.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The main purpose of this paper is to investigate theoretically and experimentally the use of family of Polynomial Powers of the Sigmoid (PPS) Function Networks applied in speech signal representation and function approximation. This paper carries out practical investigations in terms of approximation fitness (LSE), time consuming (CPU Time), computational complexity (FLOP) and representation power (Number of Activation Function) for different PPS activation functions. We expected that different activation functions can provide performance variations and further investigations will guide us towards a class of mappings associating the best activation function to solve a class of problems under certain criteria.
Resumo:
This paper presents a method to enhance microcalcifications and classify their borders by applying the wavelet transform. Decomposing an image and removing its low frequency sub-band the microcalcifications are enhanced. Analyzing the effects of perturbations on high frequency subband it's possible to classify its borders as smooth, rugged or undefined. Results show a false positive reduction of 69.27% using a region growing algorithm. © 2008 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)