966 resultados para water-stress


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Photosynthetic activity of cereals has traditionally been studied using leaves, thus neglecting the role of other organs such as ears. Here, we studied the effects of water status and genotypes on the photosynthetic activity of the flag leaf blade and the ear of durum wheat. The various parameters related to the photosynthetic activity were analysed in relation to the total above-ground plant biomass and grain yield at maturity. Four local varieties plus two cultivars adapted to the semiarid areas of South Morocco were grown in pots in a greenhouse. Five different water treatments were maintained from the beginning of stem elongation to maturity, when shoot biomass and grain yield were recorded. The net photosynthesis (A), stomatal conductance (gs) and transpiration (T) of the ear and the flag leaf were measured at anthesis. In both organs these factors decreased significantly with water deficit, whereas the A/T and A/gs ratios increased. The genotype effect was also significant for all traits studied. Whole-organ photosynthesis was much higher in the ear than in the flag leaf in well-watered conditions. As water stress developed, photosynthesis decreased less in the ear than in the flag leaf. Whole-ear photosynthesis correlated better than flag leaf photosynthesis with biomass and yield. Nevertheless, the relationships of the whole flag leaf with biomass and yield improved as the water stress became more severe, suggesting a progressive shift of yield from sink to source limitation. For all water regimes the ratios A/gs and A/T of the ear also showed a higher (negative) correlation with both biomass and yield than those of the flag leaf. The results indicate that the ear has a greater photosynthetic role than the flag leaf in determining grain yield, not only in drought but also in the absence of stress.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this work was to study the response to water stress of a drought sensitive soybean cultivar inoculated with Bradyrhizobium japonicum (strain CB1809, Semia 586) and B. elkanii (strain 29W, Semia 5019). CB1809 nodulated plants produced a significantly higher root fraction (19%) than 29W (14.6%). Plants inoculated with CB1809 produced less nodules and accumulated more nitrogen than those inoculated with 29W. In general, low amounts of ureides in nodules were found in watered plants inoculated with either CB1809 or 29W strains, but those levels were five-fold increased in stressed plants inoculated with CB1809. Nodules formed by strain CB1809 had aspartate and glutamate as major amino acids, while those formed by 29W had glutamate, asparagine and alanine. In nodules of plants inoculated with CB1809 aspartate showed the highest accumulation (5 µmol g-1); in stressed plants this amino acid reached a value of 26 µmol g-1, and asparagine was not detected. Nodules formed by the strain 29W accumulated 1 µmol g-1 of aspartate, whether plants were stressed or not. Asparagine was the major amino acid found in nodules from watered plants (6 µmol g-1) and the amount of this amino acid was six-fold increased when plants were water stressed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Crop seasonal sensitivity to water stress is concerned with how to control water stress levels to optimise yield or profitability. It deals with when we can reduce irrigation and impose moderate water deficits without affecting our target, and when we can apply water to avoid too much stress.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of eucalyptus biochar on the transpiration rate of upland rice 'BRSMG Curinga' as an alternative means to decrease the effect of water stress on plant growth and development. Two-pot experiments were carried out using a completely randomized block design, in a split-plot arrangement, with six replicates. Main plots were water stress (WS) and no-water stress (NWS), and the subplots were biochar doses at 0, 6, 12 and 24% in growing medium (sand). Total transpirable soil water (TTSW), the p factor - defined as the average fraction of TTSW which can be depleted from the root zone before water stress limits growth -, and the normalized transpiration rate (NTR) were determined. Biochar addition increased TTSW and the p factor, and reduced NTR. Consequently, biochar addition was able to change the moisture threshold (p factor) of the growing medium, up to 12% maximum concentration, delaying the point where transpiration declines and affects yield.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abstract: The objective of this work was to evaluate the feasibility of using physiological parameters for water deficit tolerance, as an auxiliary method for selection of upland rice genotypes. Two experiments - with or without water deficit - were carried out in Porangatu, in the state of Goiás, Brazil; the water deficit experiment received about half of irrigation that was applied to the well-watered experiment. Four genotypes with different tolerance levels to water stress were evaluated. The UPLRI 7, B6144F-MR-6-0-0, and IR80312-6-B-3-2-B genotypes, under water stress conditions, during the day, showed lower stomatal diffusive resistance, higher leaf water potential, and lower leaf temperature than the control. These genotypes showed the highest grain yields under water stress conditions, which were 534, 601, and 636 kg ha-1, respectively, and did not differ significantly among them. They also showed lower drought susceptibility index than the other genotypes. 'BRS Soberana' (susceptible control) was totally unproductive under drought conditions. Leaf temperature is a easy-read parameter correlated to plant-water status, viable for selecting rice genotypes for water deficit tolerance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The term water stress refers to the effects of low water availability on microbial growth and physiology. Water availability has been proposed as a major constraint for the use of microorganisms in contaminated sites with the purpose of bioremediation. Sphingomonas wittichii RW1 is a bacterium capable of degrading the xenobiotic compounds dibenzofuran and dibenzo-p-dioxin, and has potential to be used for targeted bioremediation. The aim of the current work was to identify genes implicated in water stress in RW1 by means of transposon mutagenesis and mutant growth experiments. Conditions of low water potential were mimicked by adding NaCl to the growth media. Three different mutant selection or separation method were tested which, however recovered different mutants. Recovered transposon mutants with poorer growth under salt-induced water stress carried insertions in genes involved in proline and glutamate biosynthesis, and further in a gene putatively involved in aromatic compound catabolism. Transposon mutants growing poorer on medium with lowered water potential also included ones that had insertions in genes involved in more general functions such as transcriptional regulation, elongation factor, cell division protein, RNA polymerase β or an aconitase.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The complexity of the connexions within an economic system can only be reliably reflected in academic research if powerful methods are used. Researchers have used Structural Path Analysis (SPA) to capture not only the linkages within the production system but also the propagation of the effects into different channels of impacts. However, the SPA literature has restricted itself to showing the relations among sectors of production, while the connections between these sectors and final consumption have attracted little attention. In order to consider the complete set of channels involved, in this paper we propose a structural path method that endogenously incorporates not only sectors of production but also the final consumption of the economy. The empirical application comprises water usages, and analyses the dissemination of exogenous impacts into various channels of water consumption. The results show that the responsibility for water stress is imputed to different sectors and depends on the hypothesis used for the role played by final consumption in the model. This highlights the importance of consumers’ decisions in the determination of ecological impacts. Keywords: Input-Output Analysis, Structural Path Analysis, Final Consumption, Water uses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The experiment was carried out at the Embrapa Semi-Árido, Petrolina-PE, Brazil, in order to study the physiological responses of umbu plants propagated by seeds and by stem cuttings under water stress conditions, based on leaf water potential and gas exchange measurements. Data were collected in one-year plants established in pots containing 30 kg of a sandy soil and submitted to twenty-day progressive soil water deficit. The evaluations were based on leaf water potential and gas exchange data collection using psychrometric chambers and a portable infra-red gas analyzer, respectively. Plants propagated by seeds maintained a significantly higher water potential, stomatal conductance, transpiration and photosynthesis under decreasing soil water availability. However, plants propagated by stem cuttings were unable to maintain a favorable internal water balance, reflecting negatively on stomatal conductance and leaf gas exchange. This fact is probably because umbu plants propagated by stem cuttings are not prone to formation of root tubers which are reservoirs for water and solutes. Thus, the establishing of umbu plants propagated by stem cuttings must be avoided in areas subjected to soil water deficit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although the mechanisms of nodule N2 fixation in legumes are now well documented, some uncertainty remains on the metabolic consequences of water deficit. In most cases, little consideration is given to other organs and, therefore, the coordinated changes in metabolism in leaves, roots, and nodules are not well known. Here, the effect of water restriction on exclusively N2-fixing alfalfa (Medicago sativa L.) plants was investigated, and proteomic, metabolomic, and physiological analyses were carried out. It is shown that the inhibition of nitrogenase activity caused by water restriction was accompanied by concerted alterations in metabolic pathways in nodules, leaves, and roots. The data suggest that nodule metabolism and metabolic exchange between plant organs nearly reached homeostasis in asparagine synthesis and partitioning, as well as the N demand from leaves. Typically, there was (i) a stimulation of the anaplerotic pathway to sustain the provision of C skeletons for amino acid (e.g. glutamate and proline) synthesis; (ii) re-allocation of glycolytic products to alanine and serine/glycine; and (iii) subtle changes in redox metabolites suggesting the implication of a slight oxidative stress. Furthermore, water restriction caused little change in both photosynthetic efficiency and respiratory cost of N2 fixation by nodules. In other words, the results suggest that under water stress, nodule metabolism follows a compromise between physiological imperatives (N demand, oxidative stress) and the lower input to sustain catabolism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ('ORCHIDEE'), and the other a forest growth model particularly developed for Mediterranean simulations ('GOTILWA+'), was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The experiment was carried out in pots in a glasshouse, with one plant per pot and nine repetitions per treatment. The treatments consisted of free or restricted leaves, submited to 90-100% or 60-70% soil field capacity (FC). Only independent effects of water availability or leaf movement were observed on yield components. Plants under well-watered conditions and with freely orienting leaves were taller, and had a larger number of ramifications. The greater development favored the setting of a higher number of inflorescences per plant in these treatments. This behavior resulted in a high number of flowers, green and mature legumes per plant, thus resulting in high seed production which was the most evident response to water availability. Although individual seed weight was higher in the water stress treatment, total seed production was higher for well-watered plants, with no statistically significant effect of leaf movements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soybeans grown under water stress associated with high temperatures during seed maturation and pre-harvest may produce green seed (GS) with expressive reduction in seed quality. The objectives of this study were to evaluate the response of different soybean cultivars grown under these stressful conditions regarding their susceptibility to GS production and to determine the chlorophyll retention levels and the chlorophyllase activity in the seeds. Seeds of four soybean cultivars [BRS 133, CD 206, MG/BR 46 (Conquista) and BRSMG 251 (Robusta)] were grown under greenhouse conditions until R5.5. At R6, the plants were transferred to phytotrons under temperature stress (from 28ºC to 36ºC) and with water stresses of 10% gravimetric moisture, no water and normal supply. Seeds were harvested at R9 when the percentage of GS and weight of 100 seeds were determined. The contents of a, b and total chlorophylls and the chlorophyllase activity were also determined. The expression of GS production under these conditions varied among cultivars: Conquista and Robusta were considered more susceptible to the production of GS compared to 'BRS 133' and 'CD 206'. These cultivars produced lower GS levels, lower chlorophyll retention and higher chlorophyllase activity compared to Robusta and Conquista. Soybean plants submitted to water and temperature stresses produced high levels of GS, which were small, light and had high chlorophyll contents and low chlorophyllase activity. The contents of a, b and total chlorophylls in GS were inversely proportional to the chlorophyllase activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Niagara Peninsula of Ontario is the largest viticultural area in Canada. Although it is considered to be a cool and wet region, in the last decade many water stress events occurred during the growing seasons with negative effects on grape and wine quality. This study was initiated to understand and develop the best strategies for water management in vineyards and those that might contribute to grape maturity advancement. The irrigation trials investigated the impact of time of initiation (fruit set, lag phase and veraison), water replacement level based on theoretical loss through crop evapotranspiration (ETc; 100,50 and 25%) and different irrigation strategies [partial root zone drying (PRD) versus regulated deficit irrigation (RD!)] on grape composition and wine sensory profiles. The irrigation experiments were conducted in a commercial vineyard (Lambert Vineyards Inc.) located in Niagara-on-the-Lake, Ontario, from 2005 through 2009. The two experiments that tested the combination of different water regimes and irrigation time initiation were set up in a randomized block design as follows: Baco noir - three replicates x 10 treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set, lag phase and veraison) + control]; Chardonnay - three replicates x seven treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set and veraison) + control]. The experiments that tested different irrigation strategies were set up on two cultivars as follows: Sauvignon blanc - four replicates x four treatments [control, fully irrigated (100% ETc), PRD (100% ETc) and RDI (25% ETc)]; Cabemet Sauvignon - four replicates x five treatments [control, fully irrigated (100% ETc), PRD (100% ETc), RDI (50% ETc) and RDI (25% ETc)]. The controls in each experiment were nonirrigated. The irrigation treatments were compared for many variables related to soil water status, vine physiology, berry composition, wine sensory profile, and hormone composition [(abscisic acid (ABA) and its catabolites]. Soil moisture profile was mostly affected by irrigation treatments between 20 and 60 em depth depending on the grapevine cultivar and the regime of water applied. Overall soil moisture was consistently higher throughout the season in 100 and 50% ETc compare to the control. Transpiration rates and leaf temperature as well as shoot growth rate were the most sensitive variables to soil water status. Drip irrigation associated with RDI treatments (50% ETc and 25% ETc) had the most beneficial effects on vine physiology, fruit composition and wine varietal typicity, mainly by maintaining a balance between vegetative and reproductive parts of the vine. Neither the control nor the 100 ETc had overall a positive effect on grape composition and wine sensory typicity. The time of irrigation initiation affected the vine physiology and grape quality, the most positive effect was found in treatments initiated at lag phase and veraison. RDI treatments were overall more consistent in their positive effect on grape composition and wine varietal typicity comparing to PRD treatment. The greatest difference between non-irrigated and irrigated vines in most of the variables studied was found in 2007, the driest and hottest season of the experimental period. Soil water status had a greater and more consistent effect on red grapevine cultivars rather than on white winegrape cultivars. To understand the relationships among soil and plant water status, plant physiology and the hormonal profiles associated with it, abscisic acid (ABA) and its catabolites [phaseic acid (PA), dihydrophaseic acid (DPA), 7-hydroxy-ABA (TOH-ABA), 8' -hydroxy-ABA, neophaseic acid and abscisic acid glucose ester (ABA-GE)] were analyzed in leaves and berries from the Baco noir and Chardonnay irrigation trials over two growing seasons. ABA and some of its catabolites accurately described the water status in the vines. Endogenous ABA and some of its catabolites were strongly affected in Baco noir and Chardonnay by both the water regime (i.e. ET level) and timing of irrigation initiation. Chardonnay grapevines produced less ABA in both leaves and berries compared to Baco noir, which indicated that ABA synthesis is also cultivar dependant. ABA-GE was the main catabolite in treatments with high water deficits, while PA and DPA were higher in treatments with high water status, suggesting that the vine produced more ABA-GE under water deficits to maintain rapid control of the stomata. These differences between irrigation treatments with respect to ABA and catabolites were particularly noticeable in the dry 2007 season. Two trials using exogenous ABA investigated the effect of different concentrations of ABA and organs targeted for spraying, on grape maturation and berry composition of Cabemet Sauvignon grapevines, in two cool and wet seasons (2008-2009). The fIrst experiment consisted of three replicates x three treatments [(150 and 300 mg/L, both applications only on clusters) + untreated control] while the second experiment consisted in three replicates x four treatments [(full canopy, only clusters, and only leaves sprayed with 300 ppm ABA) + untreated control]. Exogenous ABA was effective in hastening veraison, and improving the composition of Cabemet Sauvignon. Ability of ABA to control the timing of grape berry maturation was dependant on both solution concentration and the target organ. ABA affected not only fruit composition but also yield components. Berries treated with ABA had lower weight and higher skin dry mass, which constitutes qualitative aspects desired in the wine grapes. Temporal advancement of ripening through hormonal control can lead to earlier fruit maturation, which is a distinct advantage in cooler areas or areas with a high risk of early frost occurrence. Exogenous ABA could provide considerable benefits to wine industry in terms of grape composition, wine style and schedule activities in the winery, particularly in wet and cool years. These trials provide the ftrst comprehensive data in eastern North America on the response of important hybrid and Vitis vinifera winegrape cultivars to irrigation management. Results from this study additionally might be a forward step in understanding the ABA metabolism, and its relationship with water status. Future research should be focused on ftnding the ABA threshold required to trigger the ripening process, and how this process could be controlled in cool climates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the last two decades, Jordan has suffered a chronic water crisis, and is the tenth most water-scarce nation on Earth. Such water stress has been well illustrated in the case of Greater Amman, the capital, which has grown dramatically from a population of around 2000 in the 1920s, to 2.17 million today. One of the distinctive characteristics of the water supply regime of Greater Amman is that since 1987 it has been based on a system of rationing, with households receiving water once a week for various durations. Amman is highly polarized socio-economically, and by means of household surveys, both quantitative and qualitative, conducted in high- and low-income divisions of the city, a detailed empirical evaluation of the storage and use of water, the strategies used by households to manage water and overall satisfaction with water supply issues is provided in this paper, looking specifically at issues of social equity. The analysis demonstrates the social and economic costs of water rationing and consequent management to be high, as well as emphasizing that issues of water quality are of central importance to all consumers regardless of their socio-economic status within the city.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Increased atmospheric concentrations of carbon dioxide (CO2) will benefit the yield of most crops. Two free air CO2 enrichment (FACE) meta-analyses have shown increases in yield of between 0 and 73% for C3 crops. Despite this large range, few crop modelling studies quantify the uncertainty inherent in the parameterisation of crop growth and development. We present a novel perturbed-parameter method of crop model simulation, which uses some constraints from observations, that does this. The model used is the groundnut (i.e. peanut; Arachis hypogaea L.) version of the general large-area model for annual crops (GLAM). The conclusions are of relevance to C3 crops in general. The increases in yield simulated by GLAM for doubled CO2 were between 16 and 62%. The difference in mean percentage increase between well-watered and water-stressed simulations was 6.8. These results were compared to FACE and controlled environment studies, and to sensitivity tests on two other crop models of differing levels of complexity: CROPGRO, and the groundnut model of Hammer et al. [Hammer, G.L., Sinclair, T.R., Boote, K.J., Wright, G.C., Meinke, H., Bell, M.J., 1995. A peanut simulation model. I. Model development and testing. Agron. J. 87, 1085-1093]. The relationship between CO2 and water stress in the experiments and in the models was examined. From a physiological perspective, water-stressed crops are expected to show greater CO2 stimulation than well-watered crops. This expectation has been cited in literature. However, this result is not seen consistently in either the FACE studies or in the crop models. In contrast, leaf-level models of assimilation do consistently show this result. An analysis of the evidence from these models and from the data suggests that scale (canopy versus leaf), model calibration, and model complexity are factors in determining the sign and magnitude of the interaction between CO2 and water stress. We conclude from our study that the statement that 'water-stressed crops show greater CO2 stimulation than well-watered crops' cannot be held to be universally true. We also conclude, preliminarily, that the relationship between water stress and assimilation varies with scale. Accordingly, we provide some suggestions on how studies of a similar nature, using crop models of a range of complexity, could contribute further to understanding the roles of model calibration, model complexity and scale. (C) 2008 Elsevier B.V. All rights reserved.