973 resultados para water exchange


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Investigating the inter-basin deep water exchange between the Pacific and Atlantic Oceans over glacial-interglacial climate cycles is important for understanding circum-Antarctic Southern Ocean circulation changes and their impact on the global Meridional Overturning Circulation. We use benthic foraminiferal d13C records from the southern East Pacific Rise to characterize the d13C composition of Circumpolar Deep Water in the South Pacific, prior to its transit through the Drake Passage into the South Atlantic. A comparison with published South Atlantic deep water records from the northern Cape Basin suggests a continuous water mass exchange throughout the past 500 ka. Almost identical glacial-interglacial d13C variations imply a common deep water evolution in both basins suggesting persistent Circumpolar Deep Water exchange and homogenization. By contrast, deeper abyssal waters occupying the more southern Cape Basin and the southernmost South Atlantic have lower d13C values during most, but not all, stadial periods. We conclude that these values represent the influence of a more southern water mass, perhaps AABW. During many interglacials and some glacial periods, the gradient between Circumpolar Deep Water and the deeper southern Cape Basin bottom water disappears suggesting either no presence of AABW or indistinguishable d13C values of both water masses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A distinct Pliocene eastern Mediterranean sapropel (i-282), recovered from three Ocean Drilling Program (ODP) Leg 160 Sites, has been investigated for its organic and inorganic composition. This sapropel is characterized by high organic carbon (Corg) and trace element contents, and the presence of isorenieratene derivatives. The latter suggests that the base of the photic zone was sulphidic during formation of the sapropel. Combined with evidence of bottom water anoxia (preservation of laminae, high redox-sensitive trace element contents, and the abundance and isotopic composition of pyrite) this leads to the tentative conclusion that almost the entire water column may have been anoxic. This anoxia resulted from high productivity and not from stagnation, because an approximation of the trace element budget during sapropel formation shows that water exchange with the western Mediterranean is needed. Entire water column anoxia has been suggested earlier for several black shales. With regard to the depositional environment and the Corg content, however, only the Cenomanian=Turonian Boundary Event (CTBE) black shales appear to be comparable to this sapropel. The proposed trace element removal mechanism of scavenging and (co-)precipitation in an anoxic water column, is thought to be similar for both types of deposits. The ultimate trace element source for the sapropel, however, is seawater, whereas it is hydrothermal and fluvial input for CTBE black shales (because they have a larger temporal and spatial distribution). Nonetheless, the Corg-rich eastern Mediterranean Pliocene sapropel discussed here may be considered to be a younger analogue of CTBE black shales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is currently under debate whether organisms that regulate their acid-base status under environmental hypercapnia demand additional energy. This could impair animal fitness, but might be compensated for via increased ingestion rates when food is available. No data are yet available for dominant Calanus spp. from boreal and Arctic waters. To fill this gap, we incubated C. glacialis at 390, 1120 and 3000 µatm for 16 days with Thalassiosira weissflogii (diatom) as food source on-board RV Polarstern in Fram Strait in 2012. Every four days copepods were sub-sampled from all CO2 treatments and clearance and ingestion rates were determined. During the SOPRAN mesocosm experiment in Bergen, Norway, 2011, we weekly collected C. finmarchicus from mesocosms initially adjusted to 390 and 3000 µatm CO2 and measured grazing at low and high pCO2. In addition, copepods were deep frozen for body mass analyses. Elevated pCO2 did not directly affect grazing activities and body mass, suggesting that the copepods did not have additional energy demands for coping with acidification, neither during long-term exposure nor after immediate changes in pCO2. Shifts in seawater pH thus do not seem to challenge these copepod species.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we propose to estimate the steric sea-level variations over a < 2-year period (April 2002 through December 2003) by combining global mean sea level (GMSL) based on Topex/ Poseidon (T/P) altimetry with time-variable geoid averaged over the oceans, as observed by the GRACE (Gravity Recovery and Climate Experiment) satellite. In effect, altimetry-derived GMSL changes results from two contributions: Steric (thermal plus salinity) effects due to sea water density change and ocean mass change due to water exchange with atmosphere and continents. On the other hand, GRACE data over the oceans provide the ocean mass change component only. The paper first discusses the corrections to apply to the GRACE data. Then the steric contribution to the GMSL is estimated using GRACE and T/P data. Comparison with available thermal expansion based on in situ hydrographic data is performed.