966 resultados para volumetric mass transfer coefficient
Resumo:
The fluid–particle interaction and the impact of different heat transfer conditions on pyrolysis of biomass inside a 150 g/h fluidised bed reactor are modelled. Two different size biomass particles (350 µm and 550 µm in diameter) are injected into the fluidised bed. The different biomass particle sizes result in different heat transfer conditions. This is due to the fact that the 350 µm diameter particle is smaller than the sand particles of the reactor (440 µm), while the 550 µm one is larger. The bed-to-particle heat transfer for both cases is calculated according to the literature. Conductive heat transfer is assumed for the larger biomass particle (550 µm) inside the bed, while biomass–sand contacts for the smaller biomass particle (350 µm) were considered unimportant. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. Biomass reaction kinetics is modelled according to the literature using a two-stage, semi-global model which takes into account secondary reactions. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase. FLUENT 6.2 has been used as the modelling framework of the simulations with the whole pyrolysis model incorporated in the form of User Defined Function (UDF).
Resumo:
The first investigation of this study is concerned with the reasonableness of the assumptions related to diffusion of water vapour in concrete and with the development of a diffusivity equation for heated concrete. It has been demonstrated that diffusion of water vapour does occur in concrete at all temperatures and that the type of diffusion is concrete is Knudsen diffusion. Neglecting diffusion leads to underestimating the pressure. It results in a maximum pore pressure of less than 1 MPa. It has also been shown that the assumption that diffusion in concrete is molecular is unreasonable even when the tortuosity is considered. Molecular diffusivity leads to overestimating the pressure. It results in a maximum pore pressure of 2.7 MPa of which the vapour pressure is 1.5 MPa while the air pressure is 1.2 MPa. Also, the first diffusivity equation, appropriately named 'concrete diffusivity', has been developed specifically for concrete that determines the effective diffusivity of any gas in concrete at any temperature. In thick walls and columns exposed to fire, concrete diffusivity leads to a maximum pore pressures of 1.5 and 2.2 MPa (along diagonals), respectively, that are almost entirely due to water vapour pressure. Also, spalling is exacerbated, and thus higher pressures may occur, in thin heated sections, since there is less of a cool reservoir towards which vapour can migrate. Furthermore, the reduction of the cool reservoir is affected not only by the thickness, but also by the time of exposure to fire and by the type of exposure, i.e. whether the concrete member is exposed to fire from one or more sides. The second investigation is concerned with examining the effects of thickness and exposure time and type. It has been demonstrated that the build up of pore pressure is low in thick members, since there is a substantial cool zone towards which water vapour can migrate. Thus, if surface and/or explosive spalling occur on a thick member, then such spalling must be due to high thermal stresses, but corner spalling is likely to be pore pressure spalling. However, depending on the exposure time and type, the pore pressures can be more than twice those occurring in thick members and thought to be the maximum that can occur so far, and thus the enhanced propensity of pore pressure spalling occurring on thin sections heated on opposite sides has been conclusively demonstrated to be due to the lack of a cool zone towards which moisture can migrate. Expressions were developed for the determination of the maximum pore pressures that can occur in different concrete walls and columns exposed to fire and of the corresponding times of exposure.
Resumo:
A 10 cm diameter four-stage Scheibel column with dispersed phase wetted packing sections has been constructed to study the hydrodynamics and mass transfer using the system toluene-acetone-water. The literature pertaining to the above extractor has been examined and the important phenomena such as droplet break-up and coalescence, mass transfer and backmixing have been reviewed. A critical analysis of the backmixing or axial mixing models and the corresponding techniques for parameter estimation was applied and an optimization technique based on Marquardt's algorithm was implemented. A single phase sampling technique was developed to estimate the acetone concentration profile in both phases along the column. Column flooding characteristics were investigated under various operating conditions and it was found that, when the impellers were located at about DI/5cm from the upper surface of the pads, the limiting flow rates increased with impeller speed. This unusual behaviour was explained in terms of the pumping effect created by the turbine impellers. Correlations were developed to predict Sauter mean drop diameters. A five-cell with backflow model was used to estimate the column performance (stage efficiency) and phases non-ideality (backflow parameters). Overall mass transfer coefficients were computed using the above model and compared with those calculated using the correlations based on single drop mechanism.
Resumo:
A multistage distillation column in which mass transfer and a reversible chemical reaction occurred simultaneously, has been investigated to formulate a technique by which this process can be analysed or predicted. A transesterification reaction between ethyl alcohol and butyl acetate, catalysed by concentrated sulphuric acid, was selected for the investigation and all the components were analysed on a gas liquid chromatograph. The transesterification reaction kinetics have been studied in a batch reactor for catalyst concentrations of 0.1 - 1.0 weight percent and temperatures between 21.4 and 85.0 °C. The reaction was found to be second order and dependent on the catalyst concentration at a given temperature. The vapour liquid equilibrium data for six binary, four ternary and one quaternary systems are measured at atmospheric pressure using a modified Cathala dynamic equilibrium still. The systems with the exception of ethyl alcohol - butyl alcohol mixtures, were found to be non-ideal. Multicomponent vapour liquid equilibrium compositions were predicted by a computer programme which utilised the Van Laar constants obtained from the binary data sets. Good agreement was obtained between the predicted and experimental quaternary equilibrium vapour compositions. Continuous transesterification experiments were carried out in a six stage sieve plate distillation column. The column was 3" in internal diameter and of unit construction in glass. The plates were 8" apart and had a free area of 7.7%. Both the liquid and vapour streams were analysed. The component conversion was dependent on the boilup rate and the reflux ratio. Because of the presence of the reaction, the concentration of one of the lighter components increased below the feed plate. In the same region a highly developed foam was formed due to the presence of the catalyst. The experimental results were analysed by the solution of a series of simultaneous enthalpy and mass equations. Good agreement was obtained between the experimental and calculated results.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Activated sludge basins (ASBs) are a key-step in wastewater treatment processes that are used to eliminate biodegradable pollution from the water discharged to the natural environment. Bacteria found in the activated sludge consume and assimilate nutrients such as carbon, nitrogen and phosphorous under specific environmental conditions. However, applying the appropriate agitation and aeration regimes to supply the environmental conditions to promote the growth of the bacteria is not easy. The agitation and aeration regimes that are applied to activated sludge basins have a strong influence on the efficacy of wastewater treatment processes. The major aims of agitation by submersible mixers are to improve the contact between biomass and wastewater and the prevention of biomass settling. They induce a horizontal flow in the oxidation ditch, which can be quantified by the mean horizontal velocity. Mean values of 0.3-0.35 m s-1 are recommended as a design criteria to ensure best conditions for mixing and aeration (Da Silva, 1994). To give circulation velocities of this order of magnitude, the positioning and types of mixers are chosen from the plant constructors' experience and the suppliers' data for the impellers. Some case studies of existing plants have shown that measured velocities were not in the range that was specified in the plant design. This illustrates that there is still a need for design and diagnosis approach to improve process reliability by eliminating or reducing the number of short circuits, dead zones, zones of inefficient mixing and poor aeration. The objective of the aeration is to facilitate the quick degradation of pollutants by bacterial growth. To achieve these objectives a wastewater treatment plant must be adequately aerated; thus resulting in 60-80% of all energetic consummation being dedicated to the aeration alone (Juspin and Vasel, 2000). An earlier study (Gillot et al., 1997) has illustrated the influence that hydrodynamics have on the aeration performance as measure by the oxygen transfer coefficient. Therefore, optimising the agitation and aeration systems can enhance the oxygen transfer coefficient and consequently reduce the operating costs of the wastewater treatment plant. It is critically important to correctly estimate the mass transfer coefficient as any errors could result in the simulations of biological activity not being physically representative. Therefore, the transfer process was rigorously examined in several different types of process equipment to determine the impact that different hydrodynamic regimes and liquid-side film transfer coefficients have on the gas phase and the mass transfer of oxygen. To model the biological activity occurring in ASBs, several generic biochemical reaction models have been developed to characterise different biochemical reaction processes that are known as Activated Sludge Models, ASM (Henze et al., 2000). The ASM1 protocol was selected to characterise the impact of aeration on the bacteria consuming and assimilating ammonia and nitrate in the wastewater. However, one drawback of ASM protocols is that the hydrodynamics are assumed to be uniform by the use of perfectly mixed, plug flow reactors or as a number of perfectly mixed reactors in series. This makes it very difficult to identify the influence of mixing and aeration on oxygen mass transfer and biological activity. Therefore, to account for the impact of local gas-liquid mixing regime on the biochemical activity Computational Fluid Dynamics (CFD) was used by applying the individual ASM1 reaction equations as the source terms to a number of scalar equations. Thus, the application of ASM1 to CFD (FLUENT) enabled the investigation of the oxygen transfer efficiency and the carbon & nitrogen biological removal in pilot (7.5 cubic metres) and plant scale (6000 cubic metres) ASBs. Both studies have been used to validate the effect that the hydrodynamic regime has on oxygen mass transfer (the circulation velocity and mass transfer coefficient) and the effect that this had on the biological activity on pollutants such as ammonia and nitrate (Cartland Glover et al., 2005). The work presented here is one part to of an overall approach for improving the understanding of ASBs and the impact that they have in terms of the hydraulic and biological performance on the overall wastewater treatment process. References CARTLAND GLOVER G., PRINTEMPS C., ESSEMIANI K., MEINHOLD J., (2005) Modelling of wastewater treatment plants ? How far shall we go with sophisticated modelling tools? 3rd IWA Leading-Edge Conference & Exhibition on Water and Wastewater Treatment Technologies, 6-8 June 2005, Sapporo, Japan DA SILVA G. (1994). Eléments d'optimisation du transfert d'oxygène par fines bulles et agitateur séparé en chenal d'oxydation. PhD Thesis. CEMAGREF Antony ? France. GILLOT S., DERONZIER G., HEDUIT A. (1997). Oxygen transfer under process conditions in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers. WEFTEC, Chicago, USA. HENZE M., GUJER W., MINO T., van LOOSDRECHT M., (2000). Activated Sludge Models ASM1, ASM2, ASM2D and ASM3, Scientific and Technical Report No. 9. IWA Publishing, London, UK. JUSPIN H., VASEL J.-L. (2000). Influence of hydrodynamics on oxygen transfer in the activated sludge process. IWA, Paris - France.
Resumo:
In this paper a mathematical model based on mass transfer in plant tissues is developed. The model takes into account the diffusion and convection of each constituent within the tissue. The driving force for the convection is assumed to be the gradient of hydrostatic pressure. The mass balance equation for the transport of each constituent is established separately for intracellular and extracellular volumes but taking into account the mass exchange across the cell membrane between the intracellular and extracellular volumes. The mass transfer results in not only the change of intracellular and extracellular volumes but also the shrinkage of whole tissue. The model allows us to quantitatively simulate the time evolution of intracellular and extracellular volumes, which was observed in histological sections under the microscope. © 2005 Elsevier B.V. All rights reserved.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS, ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
The effect of Reynolds number variation in a vertical double pipe counterflow heat exchanger due to the changes in viscosity can cause the change in flow regime, for instance, when heats up and cools down, it can convert from turbulent to laminar or inversely, that can have significant effect on heat transfer coefficient and pressure drop. Mainly, the range of transition phase has been studied in this study with the investigation of silica nanofluid dispersed in water in three different concentrations. The results have been compared with distilled water sample and showed a remarkable raise in heat transfer coefficient while pressure drop has been increased respectively, as well. Although pumping power has to go up at the same time and it is a drawback, heat transfer efficiency grows for diluted samples. On the other hand, for the most concentrated sample, effect of pressure drop dominates which leads to decline in the overall efficiency.
Resumo:
The ethanol production by Pichia stipitis was evaluated in a stirred tank bioreactor using semi-defined medium containing xylose (90.0 g/l) as the main carbon source. Experimental assays were performed according to a 2(2) full factorial design to evaluate the influence of aeration (0.25 to 0.75 vvm) and agitation (150 to 250 rpm) conditions on ethanol production. In the studied range of values, the agitation increase and aeration decrease favored ethanol production, which was maximum (26.7 g/l) using 250 rpm and 0.25 vvm, conditions that gave a volumetric oxygen transfer coefficient (k(L)a value) of 4.9 h(-1). Under these conditions, the ethanol yield factor, ethanol productivity, and the process efficiency were 0.32 g/g, 0.32 g/l.h, and 63%, respectively. These results are promising and contribute to the development of a suitable process for ethanol production from xylose by Pichia stipitis.