967 resultados para virus neutralization test
Resumo:
Balimau Putih [an Indonesian cultivar tolerant to rice tungro bacilliform virus (RTBV)] was crossed with IR64 (RTBV, susceptible variety) to produce the three filial generations F1, F2 and F3. Agroinoculation was used to introduce RTBV into the test plants. RTBV tolerance was based on the RTBV level in plants by analysis of coat protein using enzyme-linked immunosorbent assay. The level of RTBV in cv. Balimau Putih was significantly lower than that of IR64 and the susceptible control, Taichung Native 1. Mean RTBV levels of the F1, F2 and F3 populations were comparable with one another and with the average of the parents. Results indicate that there was no dominance and an additive gene action may control the expression of tolerance to RTBV. Tolerance based on the level of RTBV coat protein was highly heritable (0.67) as estimated using the mean values of F3 lines, suggesting that selection for tolerance to RTBV can be performed in the early selfing generations using the technique employed in this study. The RTBV level had a negative correlation with plant height, but positive relationship with disease index value
Resumo:
One of the faba bean viruses found in West Asia and North Africa was identified as broad bean mottle virus (BBMV) by host reactions, particle morphology and size, serology, and granular, often vesiculated cytoplasmic inclusions. Detailed research on four isolates, one each from Morocco, Tunisia, Sudan and Syria, provided new information on the virus. The isolates, though indistinguishable in ELISA or gel-diffusion tests, differed slightly in host range and symptoms. Twenty-one species (12 legumes and 9 non-legumes) out of 27 tested were systemically infected, and 14 of these by all four isolates. Infection in several species was symptomless, but major legumes such as chickpea, lentil and especially pea, suffered severely from infection. All 23 genotypes of faba bean, 2 of chickpea, 4 of lentil, 11 out of 21 of Phaseolus bean, and 16 out of 17 of pea were systemically sensitive to the virus. Twelve plant species were found to be new potential hosts and cucumber a new local-lesion test plant of the virus. BBMV particles occurred in faba bean plants in very high concentrations and seed transmission in this species (1.37%) was confirmed. An isolate from Syria was purified and two antisera were produced, one of which was used in ELISA to detect BBMV in faba bean field samples. Two hundred and three out of the 789 samples with symptoms suggestive of virus infection collected in 1985, 1986 and 1987, were found infected with BBMV: 4 out of 70 (4/70) tested samples from Egypt, 0/44 from Lebanon, 1/15 from Morocco, 46/254 from Sudan, 72/269 from Syria and 80/137 from Tunisia. This is the first report on its occurrence in Egypt, Syria and Tunisia. The virus is a potential threat to crop improvement in the region.
Resumo:
Bananas are one of the world�fs most important crops, serving as a staple food and an important source of income for millions of people in the subtropics. Pests and diseases are a major constraint to banana production. To prevent the spread of pests and disease, farmers are encouraged to use disease�] and insect�]free planting material obtained by micropropagation. This option, however, does not always exclude viruses and concern remains on the quality of planting material. Therefore, there is a demand for effective and reliable virus indexing procedures for tissue culture (TC) material. Reliable diagnostic tests are currently available for all of the economically important viruses of bananas with the exception of Banana streak viruses (BSV, Caulimoviridae, Badnavirus). Development of a reliable diagnostic test for BSV is complicated by the significant serological and genetic variation reported for BSV isolates, and the presence of endogenous BSV (eBSV). Current PCR�] and serological�]based diagnostic methods for BSV may not detect all species of BSV, and PCR�]based methods may give false positives because of the presence of eBSV. Rolling circle amplification (RCA) has been reported as a technique to detect BSV which can also discriminate between episomal and endogenous BSV sequences. However, the method is too expensive for large scale screening of samples in developing countries, and little information is available regarding its sensitivity. Therefore the development of reliable PCR�]based assays is still considered the most appropriate option for large scale screening of banana plants for BSV. This MSc project aimed to refine and optimise the protocols for BSV detection, with a particular focus on developing reliable PCR�]based diagnostics Initially, the appropriateness and reliability of PCR and RCA as diagnostic tests for BSV detection were assessed by testing 45 field samples of banana collected from nine districts in the Eastern region of Uganda in February 2010. This research was also aimed at investigating the diversity of BSV in eastern Uganda, identifying the BSV species present and characterising any new BSV species. Out of the 45 samples tested, 38 and 40 samples were considered positive by PCR and RCA, respectively. Six different species of BSV, namely Banana streak IM virus (BSIMV), Banana streak MY virus (BSMYV), Banana streak OL virus (BSOLV), Banana streak UA virus (BSUAV), Banana streak UL virus (BSULV), Banana streak UM virus (BSUMV), were detected by PCR and confirmed by RCA and sequencing. No new species were detected, but this was the first report of BSMYV in Uganda. Although RCA was demonstrated to be suitable for broad�]range detection of BSV, it proved time�]consuming and laborious for identification in field samples. Due to the disadvantages associated with RCA, attempts were made to develop a reliable PCR�]based assay for the specific detection of episomal BSOLV, Banana streak GF virus (BSGFV), BSMYV and BSIMV. For BSOLV and BSGFV, the integrated sequences exist in rearranged, repeated and partially inverted portions at their site of integration. Therefore, for these two viruses, primers sets were designed by mapping previously published sequences of their endogenous counterparts onto published sequences of the episomal genomes. For BSOLV, two primer sets were designed while, for BSGFV, a single primer set was designed. The episomalspecificity of these primer sets was assessed by testing 106 plant samples collected during surveys in Kenya and Uganda, and 33 leaf samples from a wide range of banana cultivars maintained in TC at the Maroochy Research Station of the Department of Employment, Economic Development and Innovation (DEEDI), Queensland. All of these samples had previously been tested for episomal BSV by RCA and for both BSOLV and BSGFV by PCR using published primer sets. The outcome from these analyses was that the newly designed primer sets for BSOLV and BSGFV were able to distinguish between episomal BSV and eBSV in most cultivars with some B�]genome component. In some samples, however, amplification was observed using the putative episomal�]specific primer sets where episomal BSV was not identified using RCA. This may reflect a difference in the sensitivity of PCR compared to RCA, or possibly the presence of an eBSV sequence of different conformation. Since the sequences of the respective eBSV for BSMYV and BSIMV in the M. balbisiana genome are not available, a series of random primer combinations were tested in an attempt to find potential episomal�]specific primer sets for BSMYV and BSIMV. Of an initial 20 primer combinations screened for BSMYV detection on a small number of control samples, 11 primers sets appeared to be episomal�]specific. However, subsequent testing of two of these primer combinations on a larger number of control samples resulted in some inconsistent results which will require further investigation. Testing of the 25 primer combinations for episomal�]specific detection of BSIMV on a number of control samples showed that none were able to discriminate between episomal and endogenous BSIMV. The final component of this research project was the development of an infectious clone of a BSV endemic in Australia, namely BSMYV. This was considered important to enable the generation of large amounts of diseased plant material needed for further research. A terminally redundant fragment (.1.3 �~ BSMYV genome) was cloned and transformed into Agrobacterium tumefaciens strain AGL1, and used to inoculate 12 healthy banana plants of the cultivars Cavendish (Williams) by three different methods. At 12 weeks post�]inoculation, (i) four of the five banana plants inoculated by corm injection showed characteristic BSV symptoms while the remaining plant was wilting/dying, (ii) three of the five banana plants inoculated by needle�]pricking of the stem showed BSV symptoms, one plant was symptomless while the remaining had died and (iii) both banana plants inoculated by leaf infiltration were symptomless. When banana leaf samples were tested for BSMYV by PCR and RCA, BSMYV was confirmed in all banana plants showing symptoms including those were wilting and/or dying. The results from this research have provided several avenues for further research. By completely sequencing all variants of eBSOLV and eBSGFV and fully sequencing the eBSIMV and eBSMYV regions, episomal BSV�]specific primer sets for all eBSVs could potentially be designed that could avoid all integrants of that particular BSV species. Furthermore, the development of an infectious BSV clone will enable large numbers of BSVinfected plants to be generated for the further testing of the sensitivity of RCA compared to other more established assays such as PCR. The development of infectious clones also opens the possibility for virus induced gene silencing studies in banana.
Resumo:
Background During a global influenza pandemic, the vaccine requirements of developing countries can surpass their supply capabilities, if these exist at all, compelling them to rely on developed countries for stocks that may not be available in time. There is thus a need for developing countries in general to produce their own pandemic and possibly seasonal influenza vaccines. Here we describe the development of a plant-based platform for producing influenza vaccines locally, in South Africa. Plant-produced influenza vaccine candidates are quicker to develop and potentially cheaper than egg-produced influenza vaccines, and their production can be rapidly upscaled. In this study, we investigated the feasibility of producing a vaccine to the highly pathogenic avian influenza A subtype H5N1 virus, the most generally virulent influenza virus identified to date. Two variants of the haemagglutinin (HA) surface glycoprotein gene were synthesised for optimum expression in plants: these were the full-length HA gene (H5) and a truncated form lacking the transmembrane domain (H5tr). The genes were cloned into a panel of Agrobacterium tumefaciens binary plant expression vectors in order to test HA accumulation in different cell compartments. The constructs were transiently expressed in tobacco by means of agroinfiltration. Stable transgenic tobacco plants were also generated to provide seed for stable storage of the material as a pre-pandemic strategy. Results For both transient and transgenic expression systems the highest accumulation of full-length H5 protein occurred in the apoplastic spaces, while the highest accumulation of H5tr was in the endoplasmic reticulum. The H5 proteins were produced at relatively high concentrations in both systems. Following partial purification, haemagglutination and haemagglutination inhibition tests indicated that the conformation of the plant-produced HA variants was correct and the proteins were functional. The immunisation of chickens and mice with the candidate vaccines elicited HA-specific antibody responses. Conclusions We managed, after synthesis of two versions of a single gene, to produce by transient and transgenic expression in plants, two variants of a highly pathogenic avian influenza virus HA protein which could have vaccine potential. This is a proof of principle of the potential of plant-produced influenza vaccines as a feasible pandemic response strategy for South Africa and other developing countries.
Resumo:
Circoviruses lack an autonomous DNA polymerase and are dependent on the replication machinery of the host cell for de novo DNA synthesis. Accordingly, the viral DNA needs to cross both the plasma membrane and the nuclear envelope before replication can occur. Here we report on the subcellular distribution of the beak and feather disease virus (BFDV) capsid protein (CP) and replication-associated protein (Rep) expressed via recombinant baculoviruses in an insect cell system and test the hypothesis that the CP is responsible for transporting the viral genome, as well as Rep, across the nuclear envelope. The intracellular localization of the BFDV CP was found to be directed by three partially overlapping bipartite nuclear localization signals (NLSs) situated between residues 16 and 56 at the N terminus of the protein. Moreover, a DNA binding region was also mapped to the N terminus of the protein and falls within the region containing the three putative NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome. Interestingly, whereas Rep expressed on its own in insect cells is restricted to the cytoplasm, coexpression with CP alters the subcellular localization of Rep to the nucleus, strongly suggesting that an interaction with CP facilitates movement of Rep into the nucleus. Copyright © 2006, American Society for Microbiology. All Rights Reserved.
Resumo:
HIV-1 Pr55 Gag virus-like particles (VLPs) are strong immunogens with potential as candidate HIV vaccines. VLP immunogenicity can be broadened by making chimaeric Gag molecules: however, VLPs incorporating polypeptides longer than 200 aa fused in frame with Gag have not yet been reported. We constructed a range of gag-derived genes encoding in-frame C-terminal fusions of myristoylation-competent native Pr55Gag and p6-truncated Gag (Pr50Gag) to test the effects of polypeptide length and sequence on VLP formation and morphology, in an insect cell expression system. Fused sequences included a modified reverse transcriptase-Tat-Nef fusion polypeptide (RTTN, 778 aa), and truncated versions of RTTN ranging from 113 aa to 450 aa. Baculovirus-expressed chimaeric proteins were examined by western blot and electron microscopy. All chimaeras formed VLPs which could be purified by sucrose gradient centrifugation. VLP diameter increased with protein MW, from ∼100 nm for Pr55Gag to ∼250 nm for GagRTTN. The presence or absence of the Gag p6 region did not obviously affect VLP formation or appearance. GagRT chimaeric particles were successfully used in mice to boost T-cell responses to Gag and RT that were elicited by a DNA vaccine encoding a GagRTTN polypeptide, indicating the potential of such chimaeras to be used as candidate HIV vaccines. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Human infection with a novel low pathogenicity influenza A(H7N9) virus in eastern China has recently raised global public health concerns (1). The geographic sources of infection have yet to be fully clarified, and confirmed human cases from 1 province have not been linked to those from other provinces. While some studies have identified epidemiologic characteristics of subtype H7N9 cases and clinical differences between these cases and cases of highly pathogenic influenza A(H5N1), another avian influenza affecting parts of China (2–4), the spatial epidemiology of human infection with influenza subtypes H7N9 and H5N1 in China has yet to be elucidated. To test the hypothesis of co-distribution of high-risk clusters of both types of infection, we used all available data on human cases in mainland China and investigated the geospatial epidemiologic features...
Resumo:
Background In 2011, a variant of West Nile virus Kunjin strain (WNVKUN) caused an unprecedented epidemic of neurological disease in horses in southeast Australia, resulting in almost 1,000 cases and a 9% fatality rate. We investigated whether increased fitness of the virus in the primary vector, Culex annulirostris, and another potential vector, Culex australicus, contributed to the widespread nature of the outbreak. Methods Mosquitoes were exposed to infectious blood meals containing either the virus strain responsible for the outbreak, designated WNVKUN2011, or WNVKUN2009, a strain of low virulence that is typical of historical strains of this virus. WNVKUN infection in mosquito samples was detected using a fixed cell culture enzyme immunoassay and a WNVKUN- specific monoclonal antibody. Probit analysis was used to determine mosquito susceptibility to infection. Infection, dissemination and transmission rates for selected days post-exposure were compared using Fisher’s exact test. Virus titers in bodies and saliva expectorates were compared using t-tests. Results There were few significant differences between the two virus strains in the susceptibility of Cx. annulirostris to infection, the kinetics of virus replication and the ability of this mosquito species to transmit either strain. Both strains were transmitted by Cx. annulirostris for the first time on day 5 post-exposure. The highest transmission rates (proportion of mosquitoes with virus detected in saliva) observed were 68% for WNVKUN2011 on day 12 and 72% for WNVKUN2009 on day 14. On days 12 and 14 post-exposure, significantly more WNVKUN2011 than WNVKUN2009 was expectorated by infected mosquitoes. Infection, dissemination and transmission rates of the two strains were not significantly different in Culex australicus. However, transmission rates and the amount of virus expectorated were significantly lower in Cx. australicus than Cx. annulirostris. Conclusions The higher amount of WNVKUN2011 expectorated by infected mosquitoes may be an indication that this virus strain is transmitted more efficiently by Cx. annulirostris compared to other WNVKUN strains. Combined with other factors, such as a convergence of abundant mosquito and wading bird populations, and mammalian and avian feeding behaviour by Cx. annulirostris, this may have contributed to the scale of the 2011 equine epidemic.
Resumo:
The potential for large-scale use of a sensitive real time reverse transcription polymerase chain reaction (RT-PCR) assay was evaluated for the detection of Tomato spotted wilt virus (TSWV) in single and bulked leaf samples by comparing its sensitivity with that of DAS-ELISA. Using total RNA extracted with RNeasy® or leaf soak methods, real time RT-PCR detected TSWV in all infected samples collected from 16 horticultural crop species (including flowers, herbs and vegetables), two arable crop species, and four weed species by both assays. In samples in which DAS-ELISA had previously detected TSWV, real time RT-PCR was effective at detecting it in leaf tissues of all 22 plant species tested at a wide range of concentrations. Bulk samples required more robust and extensive extraction methods with real time RT-PCR, but it generally detected one infected sample in 1000 uninfected ones. By contrast, ELISA was less sensitive when used to test bulked samples, once detecting up to 1 infected in 800 samples with pepper but never detecting more than 1 infected in 200 samples in tomato and lettuce. It was also less reliable than real time RT-PCR when used to test samples from parts of the leaf where the virus concentration was low. The genetic variability among Australian isolates of TSWV was small. Direct sequencing of a 587 bp region of the nucleoprotein gene (S RNA) of 29 isolates from diverse crops and geographical locations yielded a maximum of only 4.3% nucleotide sequence difference. Phylogenetic analysis revealed no obvious groupings of isolates according to geographic origin or host species. TSWV isolates, that break TSWV resistance genes in tomato or pepper did not differ significantly in the N gene region studied, indicating that a different region of the virus genome is responsible for this trait.
Capsicum chlorosis virus infecting Capsicum annuum in the East Kimberley region of Western Australia
Resumo:
Capsicum chlorosis virus (CaCV) was detected in field grown Capsicum annuum from Kununurra in northeast Western Australia. Identification of the Kununurra isolate (WA-99) was confirmed using sap transmission to indicator hosts, positive reactions with tospovirus serogroup IV-specific antibodies and CaCV-specific primers, and amino acid sequence comparisons that showed >97% identity with published CaCV nucleocapsid gene sequences. The reactions of indicator hosts to infection with WA-99 often differed from those of the type isolate from Queensland. The virus multiplied best when test plants were grown at warm temperatures. CaCV was not detected in samples collected in a survey of C. annuum crops planted in the Perth Metropolitan area.
Resumo:
Sindbis virus (SINV) (genus Alphavirus, family Togaviridae) is an enveloped virus with a genome of single-stranded, positive-polarity RNA of 11.7 kilobases. SINV is widespread in Eurasia, Africa, and Australia, but clinical infection only occurs in a few geographically restricted areas, mainly in Northern Europe. In Europe, antibodies to SINV were detected from patients with fever, rash, and arthritis for the first time in the early 1980s in Finland. It became evident that the causative agent of this syndrome, named Pogosta disease, was closely related to SINV. The disease is also found in Sweden (Ockelbo disease) and in Russia (Karelian fever). Since 1974, for unknown reason, the disease has occurred as large outbreaks every seven years in Finland. This study is to a large degree based on the material collected during the 2002 Pogosta disease outbreak in Finland. We first developed SINV IgM and IgG enzyme immunoassays (EIA), based on highly purified SINV, to be used in serodiagnostics. The EIAs correlated well with the hemagglutination inhibition (HI) test, and all individuals showed neutralizing antibodies. The sensitivities of the IgM and IgG EIAs were 97.6% and 100%, and specificities 95.2% and 97.6%, respectively. E1 and E2 envelope glycoproteins of SINV were shown to be recognized by IgM and IgG in the immunoblot early in infection. We isolated SINV from five patients with acute Pogosta disease; one virus strain was recovered from whole blood, and four other strains from skin lesions. The etiology of Pogosta disease was confirmed by these first Finnish SINV strains, also representing the first human SINV isolates from Europe. Phylogenetic analysis indicated that the Finnish SINV strains clustered with the strains previously isolated from mosquitoes in Sweden and Russia, and seemed to have a common ancestor with South-African strains. Northern European SINV strains could be maintained locally in disease-endemic regions, but the phylogenetic analysis also suggests that redistribution of SINV tends to occur in a longitudinal direction, possibly with migratory birds. We searched for SINV antibodies in resident grouse (N=621), whose population crashes have previously coincided with human SINV outbreaks, and in migratory birds (N=836). SINV HI antibodies were found for the first time in birds during their spring migration to Northern Europe, from three individuals: red-backed shrike, robin, and song thrush. Of the grouse, 27.4% were seropositive in 2003, one year after a human outbreak, but only 1.4% of the grouse were seropositive in 2004. Thus, grouse might contribute to the human epidemiology of SINV. A total of 86 patients with verified SINV infection were recruited to the study in 2002. SINV RNA detection or virus isolation from blood and/or skin lesions was successful in eight patients. IgM antibodies became detectable within the first eight days of illness, and IgG within 11 days. The acute phase of Pogosta disease was characterized by arthritis, itching rash, fatigue, mild fever, headache, and muscle pain. Half of the patients reported in self-administered questionnaires joint symptoms to last > 12 months. Physical examination in 49 of these patients three years after infection revealed persistent joint manifestations. Arthritis (swelling and tenderness in physical examination) was diagnosed in 4.1% (2/49) of the patients. Tenderness in palpation or in movement of a joint was found in 14.3% of the patients in the rheumatologic examination, and additional 10.2% complained persisting arthralgia at the interview. Thus, 24.5% of the patients had joint manifestations attributable to the infection three years earlier. A positive IgM antibody response persisted in 3/49 of the patients; both two patients with arthritis were in this group. Persistent symptoms of SINV infection might have considerable public health implications in areas with high seroprevalence. The age-standardized seroprevalence of SINV (1999-2003, N=2529) in the human population in Finland was 5.2%. The seroprevalence was high in North Karelia, Kainuu, and Central Ostrobothnia. The incidence was highest in North Karelia. Seroprevalence in men (6.0%) was significantly higher than in women (4.1%), however, the average annualized incidence in the non-epidemic years was higher in women than in men, possibly indicating that infected men are more frequently asymptomatic. The seroprevalence increased with age, reaching 15.4% in persons aged 60-69 years. The incidence was highest in persons aged 50-59 years.
Resumo:
Take home messages: Plant only high quality seed that has been germ and vigour tested and treated with a registered seed dressing Avoid poorly drained paddocks and those with a history of lucerne, medics or chickpea Phytophthora root rot, PRR; do not grow Boundary if you even suspect a PRR risk Select best variety suited to soil type, farming system and disease risk Beware Ascochyta: follow recommendations for your variety and district Minimise risk of virus by retaining stubble, planting on time and at optimal rate, controlling weeds and ensuring adequate plant nutrition Test soil to determine risk of salinity and sodicity – do not plant chickpeas if ECe > 1.0-1.3 dS/m. Beware early desiccation of seed crops – know how to tell when 90-95% seeds are mature
Resumo:
Hepatitis C virus (HCV), a member of Flaviviridae, encoding a positive-sense single-stranded RNA translates by cap-independent mechanism using the internal ribosome entry site (IRES) present in the 5' UTR of the virus. The IRES has complex stem loop structures and is capable of recruiting the 40S ribosomal subunit in a factor-independent fashion. As the IRES sequence is highly conserved throughout the HCV genotypes and the translation is the first obligatory step of the HCV life cycle, the IRE'S-mediated translation, or more specifically, the ribosome HCV RNA interaction is an attractive target to design effective antivirals. This article will focus on the mechanism of the HCV IRES translation and the various ways in which the interaction of ribosome and IRES has been targeted.
Resumo:
The tight junction protein claudin-1 (CLDN1) is necessary for hepatitis C virus (HCV) entry into target cells. Recent studies have made disparate observations of the modulation of the expression of CLDN1 on cells following infection by HCV. In one study, the mean CLDN1 expression on cells exposed to HCV declined, whereas in another study HCV infected cells showed increased CLDN1 expression compared to uninfected cells. Consequently, the role of HCV in modulating CLDN1 expression, and hence the frequency of cellular superinfection, remains unclear. Here, we present a possible reconciliation of these disparate observations. We hypothesized that viral kinetics and not necessarily HCV-induced receptor modulation underlies these disparate observations. To test this hypothesis, we constructed a mathematical model of viral kinetics in vitro that mimicked the above experiments. Model predictions provided good fits to the observed evolution of the distribution of CLDN1 expression on cells following exposure to HCV. Cells with higher CLDN1 expression were preferentially infected and outgrown by cells with lower CLDN1 expression, resulting in a decline of the mean CLDN1 expression with time. At the same time, because the susceptibility of cells to infection increased with CLDN1 expression, infected cells tended to have higher CLDN1 expression on average than uninfected cells. Our study thus presents an explanation of the disparate observations of CLDN1 expression following HCV infection and points to the importance of considering viral kinetics in future studies of receptor expression on cells exposed to HCV.
Resumo:
Influenza virus evades host immunity through antigenic drift and shift, and continues to circulate in the human population causing periodic outbreaks including the recent 2009 pandemic. A large segment of the population was potentially susceptible to this novel strain of virus. Historically, monoclonal antibodies (MAbs) have been fundamental tools for diagnosis and epitope mapping of influenza viruses and their importance as an alternate treatment option is also being realized. The current study describes isolation of a high affinity (K-D = 2.1 +/- 0.4 pM) murine MAb, MA2077 that binds specifically to the hemagglutinin (HA) surface glycoprotein of the pandemic virus. The antibody neutralized the 2009 pandemic H1N1 virus in an in vitro microneutralization assay (IC50 = 0.08 mu g/ml). MA2077 also showed hemagglutination inhibition activity (HI titre of 0.50 mu g/ml) against the pandemic virus. In a competition ELISA, MA2077 competed with the binding site of the human MAb, 2D1 (isolated from a survivor of the 1918 Spanish flu pandemic) on pandemic H1N1 HA. Epitope mapping studies using yeast cell-surface display of a stable HA1 fragment, wherein `Sa' and `Sb' sites were independently mutated, localized the binding site of MA2077 within the `Sa' antigenic site. These studies will facilitate our understanding of antigen antibody interaction in the context of neutralization of the pandemic influenza virus.