906 resultados para vegetable irradiation
Resumo:
The radiation chemistry of PCTFE at different temperatures has been studied. The polymer was irradiated under vacuum to absorbed doses of up to 1500 kGy. Three irradiation temperatures were chosen. These included ambient temperature, a temperature well above the T, and a temperature above the crystalline melting temperature. These were 298, 423 and 493 K, respectively. The formation of new structures was identified by solid-state FTIR and F-19 NMR. No branching was observed below the melting temperature, but branches were observed above the melting temperature. G-values for chain-end formation were 1.5 and 2.4 at room temperature and 423 K, respectively and the G-value for the formation of double bonds was found to be < 0.1. For the irradiations at 493 K, the G-values for the formation of chain ends, double bonds and branching points were 3.6, 0.2 and 0.5, respectively. The presence of long-chain branches within the polymer structure could not be proven for radiolysis at 493 K, but scission predominates and network formation does not occur upon irradiation. DSC studies of the polymers irradiated at ambient temperature were consistent with chain scission leading to an increase in the percentage crystallinity, as observed for other fluoropolymers. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Three different particular geometrical shapes of parallelepiped, cylinder and sphere were taken from cut green beans (length:diameter = 1:1, 2:1 and 3:1) and potatoes (aspect ratio = 1:1, 2:1 and 3:1) and peas, respectively. Their drying behaviour in a fluidised bed was studied at three different drying temperatures of 30, 40 and 50 degreesC (RH = 15%). Drying curves were constructed using non-dimensional moisture ratio (MR) and time and their behaviour was modelled using exponential (MR = exp(-kt)) and Page (MR = exp(-kt(n))) models. The effective diffusion coefficient of moisture transfer was determined by Fickian method using uni- and three-dimensional moisture movements. The diffusion coefficient was least affected by the size when the moisture movement was considered three-dimensional, whereas the drying temperature had a significative effect on diffusivity as expected. The drying constant and diffusivity coefficients were on the descending order for potato, beans and peas. The Arrhenius activation energy for the peas was also highest, indicating a strong barrier to moisture movement in peas as compared to beans and skinless cut potato pieces. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The effect of electron beam radiation on a perfluoroalkoxy (PFA) resin was examined using solid-state high-speed magic angle spinning F-19 NMR spectroscopy and FT-IR spectroscopy. Samples were prepared for analysis by subjecting them to electron beam radiation in the dose range 0.5-2.0 MGy at 633 K, which is above the crystalline melting temperature. The new structures were identified and include new saturated chain ends, short and long branches, unsaturated groups, and cross-links. The radiation chemical yield (G value) of new long branch points was greater than the G value of new chain ends, suggesting that cross-linking is the net radiolytic process. This conclusion was supported by an observed decrease in the crystallinity and an increase in the optical clarity of the polymer.
Resumo:
Thin films consisting of 3 or 4 Sb and Ge alternating layers are irradiated with single nanosecond laser pulses (12 ns, 193 nm). Real time reflectivity (RTR) measurements are performed during irradiation, and Rutherford backscattering spectrometry (RBS) is used to obtain the concentration depth profiles before and after irradiation. Interdiffusion of the elements takes place at the layer interfaces within the liquid phase. The reflectivity transients allow to determine the laser energy thresholds both to induce and to saturate the process being both thresholds dependent on the multilayer configuration. It is found that the energy threshold to initiate the process is lower when Sb is at the surface while the saturation is reached at lower energy densities in those configurations with thinner layers.
Resumo:
Pure tungsten and tantalum plates and tungsten-tantalum composites produced via mechanical alloying and spark plasma sintering were bombarded with He+ and D+ energetic ion beams and deuterium plasmas. The aim of this experiment is to study the effects caused by individual helium and deuterium exposures and to evidence that the modifications induced in the composites at different irradiation energies could be followed by irradiating the pristine constituent elements under the same experimental conditions, which is relevant considering the development of tailored composites for fusion applications. Higher D retentions, especially in tungsten, and superficial blistering are observed in both components after helium exposure. The blistering is magnified in the tantalum phase of composites due to its higher ductility and to water vapour production under deuterium irradiation. At lower irradiation energies the induced effects are minor. After plasma exposure, the presence of tantalum does not increase the D content in the composites. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
This study reports the levels of nitrate and nitrite of 34 vegetable samples, including different varieties of cabbage, lettuce, spinaches, parsley and turnips, collected in several locations of an intensive agricultural area (Modivas, Vila do Conde, northern Portugal). Nitrate levels ranged between 54 and 2440 mg NO-3 kg-1, while nitrite levels ranged between 1.1 and 57 mg NO-2 kg-1. The maximum residue levels established for nitrate in spinach and lettuce samples were not exceeded. Nitrate and nitrite levels reported in the literature for the same type of samples are reviewed, as well as the contribution of vegetables to nitrate and nitrite dietary exposure of populations.
Resumo:
This study uses the process simulator ASPEN Plus and Life Cycle Assessment (LCA) to compare three process design alternatives for biodiesel production from waste vegetable oils that are: the conventional alkali-catalyzed process including a free fatty acids (FFAs) pre-treatment, the acid-catalyzed process, and the supercritical methanol process using propane as co-solvent. Results show that the supercritical methanol process using propane as co-solvent is the most environmentally favorable alternative. Its smaller steam consumption in comparison with the other process design alternatives leads to a lower contribution to the potential environmental impacts (PEI’s). The acid-catalyzed process generally shows the highest PEI’s, in particular due to the high energy requirements associated with methanol recovery operations.
Resumo:
Pea-shoots are a new option as ready-to-eat baby-leaf vegetable. However, data about the nutritional composition and the shelf-life stability of these leaves, especially their phytonutrient composition is scarce. In this work, the macronutrient, micronutrient and phytonutrients profile of minimally processed pea shoots were evaluated at the beginning and at the end of a 10-day storage period. Several physicochemical characteristics (color, pH, total soluble solids, and total titratable acidity) were also monitored. Standard AOAC methods were applied in the nutritional value evaluation, while chromatographic methods with UV–vis and mass detection were used to analyze free forms of vitamins (HPLC-DAD-ESI-MS/MS), carotenoids (HPLC-DAD-APCI-MSn) and flavonoid compounds (HPLC-DAD-ESI-MSn). Atomic absorption spectrometry (HR-CS-AAS) was employed to characterize the mineral content of the leaves. As expected, pea leaves had a high water (91.5%) and low fat (0.3%) and carbohydrate (1.9%) contents, being a good source of dietary fiber (2.1%). Pea shoots showed a high content of vitamins C, E and A, potassium and phosphorous compared to other ready-to-eat green leafy vegetables. The carotenoid profile revealed a high content of β-carotene and lutein, typical from green leafy vegetables. The leaves had a mean flavonoid content of 329 mg/100 g of fresh product, mainly composed by glycosylated quercetin and kaempferol derivatives. Pea shoots kept their fresh appearance during the storage being color maintained throughout the shelf-life. The nutritional composition was in general stable during storage, showing some significant (p < 0.05) variation in certain water-soluble vitamins.
Resumo:
This paper characterizes four ‘fractal vegetables’: (i) cauliflower (brassica oleracea var. Botrytis); (ii) broccoli (brassica oleracea var. italica); (iii) round cabbage (brassica oleracea var. capitata) and (iv) Brussels sprout (brassica oleracea var. gemmifera), by means of electrical impedance spectroscopy and fractional calculus tools. Experimental data is approximated using fractional-order models and the corresponding parameters are determined with a genetic algorithm. The Havriliak-Negami five-parameter model fits well into the data, demonstrating that classical formulae can constitute simple and reliable models to characterize biological structures.